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I. INTRODUCTION

A. Background and Objectives

An abrupt change in boundary conditions, such as the actuation of a
switch or the inception of a fault, will induce transients in an electri-
cal power system. Although a power system is in a steady state most of
the time, it must be designed to withspand worst possible stresses to
which it may be subjected. These extreme stresses usually occur during
transients. Consequently, power systeﬁ design is determined by tramsient
conditions, rather than by steady state behavior. The size of trans-—
mission line towers, the clearances for transmission line conductors,
insulation of windings in power apparatus, rating of circuit breakers,
loading capability of equipment--all of these specifications are dictated
by considerations of power system transients.

The solution of the system equations depends upon the model of each
part in the system. Thus a transmission line may be treated as a short
bus section, as an infinitely long line, or as a distortionless line,
depending upon the Speéific transient phenomenon 5eing investigated.
Similarly, a transformer may be represented by an indictance, by a net-
work of capacitances, or by a combination of the two. Conceptually, one
could imagine a mathematical model for‘a component which represents it
correctly under all circumstances. However, even if such models existed,
they would be cumbersome and inefficient simulation programs.

The model of the transmission line is thé most important element in

the analysis of fault induced transients on a power system. The



transmission line has four distributed parameters: a series resistance
(R), a shunt conductance (G), a series in&uctance (L), and a shunt
capacitance (C) per unit length. The analysis of transients may involve
differential equations. These equations are always solved under condi-~
tions where simplifying assumptions are made. Typical ‘assumptions are
lumped paraméters, frequency independent parameters, or completely
transposed line. However, these assumptions should only be used for
restricted conditions for which they are Qalid. Also a great advantage
using distributed parameters is that, once a general solution is found,
a fault occurring anywhere on the line can be simulated. In a lumped
parameter model, the only available line locations are the discrete
points of the interconnected sections.

Transformers or rotating machines are typically represented by an
inductance, sometimes with capacitance at its terminals. Such represen~
tations may be adequate if the fault location is remote from the termi-
nals. When the fault location is close to the source, this representa-
tion is questionable. In such caées, a more accurate machine model is
needed. Therefore, representing the transmission 1inevwithout unreason-—
able assumptions and with a more accurate machine model would improve
the accuracy of the current and voltage waveforms that would be deduced
from a simulation.

Transients due to fault inception on a power system may produce

overvoltages, overcurrents, and abnormal waveforms.



Overvoltages:

A fault gives rise to induced voltages on the ﬁnfaulted phases, and
often the switching surges produced by the fault are causes of signifi-
cant overvoltages. The design and insulation coordination of power
apparatus and systems are determined by overvoltages. The system insula-
tion level must be sufficiently high to assure reliability, but at the
same time there are strong economic reasons for keeping it as low as
possible. As a result of these opposing factors, a much greater emphasis
is being placed on predicted system overvoltages at the planning stage,
in order that steps may be taken to reduce their severify and to minimize

the system insulation level.

Overcurrents:

Overcurrents result from system faults and their study helps deter~
mine the interrupting duty on circuit breakers and the mechanical and
thermal stresses within machines, transformers, and buses. Unbalanced
fault simulation is often required for determining the currents in
machines, vAn accurate representation of the machines during fault

transient is required for the boundary comdition.

Abnormal waveforms:

The waveforms of power system voltages and currents during tﬁe
first few cycles following the fault occurrence ére of considerable
importance. For example, the response of a protective relay to the
fault generated transient waveforms is of great concern in determining

its reliability for a given application. Certain control equipment,



such as the automatic control system of HVDC systems is sensitive to the

waveforms and harmonic content.

Simulation of all these system conditions requires an accurate

representation of power systems during the transient period.

B. Scope of the Work

The main objective of this work is to develop an accurate digital

simulation of a typical power system du:ing the fault transient period.

The work contains the following parts:

1.

2'

4.

5.

Modeling of the transmission line.

Solution of the transmission line equation. This procedure is
general and can be used to find the tramsient and steady-state
solutions for the transmission line equations without imposing
unrealistic simplifying assumptions.

Modeling the fault.

Developing a method that makes the machine and transmission line
equations mutually compatible. This method is based on finding
a transformation matrix that transforms the synchronous machine
equations from the ()~d-q components to the 0-1-2 components in
frequency domain to account correctly for the variation of the
machine parameters.

Formulation of the transmission line equations with the machine
equations. The machine equations are based on the simple

machine model and the full machine model.



Development of a FORTRAN computer program for simulation. This
program allows for frequency dependent paraﬁeters and
untransposition of the transmission line along with the simple
or full generéﬁor model. The program is used to obtain the
three-phase voltage and current waveforms af the fault location
and at the sending end.

Conclusions based on the comparison of ;he different cases.
Such comparisons illustrate the effects of the different .
assumptions and when they can be applied without jeopardizing
the solution. The effects of the following factors on the fault
transient waveforms are examined:

e gkin effect

load level

* fault location
e type of fault
* generator size

e fault impedance.



II. LITERATURE REVIEW

A. Transmission Line Model

Transient phenomena in power systems have been studied by many
authors. 1In 1855, William Thomson investigated the theory of transients
on long cables by assuming the magnetic effect to be negligibly small.
He considered only the resistance R and the capacitance C per unit length
and derived the well-known diffusion equation for which J. B, J. Fourier
(1822) had given solutions. In 1857, Kirchhoff, who formulated the two
well-known electric circuit laws, had extended the long-line theory to
include the effect of self-induction and also at that timg deduced the
finite velocity of propagation of electromagnefic waves. Heaviside also
examined the induction-effect in 1881 and established what is now known
as the traveling-wave solution. 1In 1886, he introduced for the first time
"leakance" (also known as shunt conductance) as the fourth parameter into
the transmission line equations and later formulated the conditions
necessary for a "distortionless line." Heaviside had used the word
"impedance" for the first time in 1884, and '"reactance," which he intro-
duced from France in 1893. Since Heaviside, the general transmission
line model includes four distribuﬁed line parameters; namely, series
resistance R, series iﬁductance L, shunt capacitance C, and shunt con-
ductance G per unit length. In power transmission lines, the shunt con=~
ductance G is very small compared to the other three parameters and is
usually neglected.

Methods of transmission line simulation for transient analysis have

been introduced by many authors and they can be classified into three



main catepgories: miniature power system simulation, analog and hybrid

computer simulation, and digital computer simulation.

Miniature power system simulation:

These simulators are commonly known as Transient Network Analyzers
(TNAs) or Power Simulators. Electromagnetic transients have been
studied with transient network analyzers since the late 1930s. Induc-
tors wound on magnetic cores with specially selected characteristics
were used to represent transmission line sections, transformers, source
impedances, etc. The generators were represented by ideal voltage
SOurees behind appropriate reactances and were operated at the nominal
power frequency. This leads to simulation of transient phenomena in
real time, which often is a valuable asset. There are many problems
which require that the simulation be in real time. The advantage to
consider is the fact that in a real time simulation, the actual genera-
tion and display of the transient is also in real time, which is gener-
ally quite short, of the order of a few milliseconds. Thus, whenever a
particular study requires a large number of repetitive runs, the actual
run time on a neework simulator for the entire set of studies is quite
short. Another advantage of the physical model is that there are no
computationally unstable solutions in a physical miniature model system.
This problem is known to occur occasionally in computer simulations,
especially with studies involving long run times. There are certain
aspects of miniature model simulations which often present problems.
Analog simulators are relatively inflexible. Setting up for a study on

the simulator is a time consuming process. Also, the size of the



system that can be simulated for a study is limited by the available
equipment. Simulators capable of representing a system of reasonable
size are fairly large installations. In addition ﬁo the probiems
associated with the size and inflexibility, there are certain technical
limitations to all physical simulations such as the finite length
representation of transmission lines. In spite of these disadvantages,
the TNA technique was the dominant tool in transient analysis for many

years,

Analog and hybrid computer simulation:

Analog and hybrid computers have been used for some specific
transient simulation studies such as practical industry problems. The
major advantage of analog computer simulation is that it does simulta-
neous integration of all the differential equations in a problem. On a
digital computer, the differential equations must be processed sequen-
tially (in a computational sense, and not necessarily in a structural
sense). Even so, the analog computer simulations are rarely.as fast as
the network simulators. Recently, some very high speed analog simula-
tions have been attempted, but they are not general purpose analog
computer systems, rather they tend to be special hardwired simulation
tools. The problem set-up time with analog and hybrid computers tends
to be high. Also, algebraic equations, requiring loops without time

lags, cannot be solved easily on analog computers.

Digital computer simulation:
For many years, digital computer methods have been employed for the

calculation of transient phenomena on power system networks caused by



switching operations. The computational techniques used may be broadly

classified into time-domain methods and frequency-domain methods.

1. Time~domain methods

a. Basic methods and transient programs Historically, digital

computer programs fbr power transiehts began with techniques for studying
wave propagation phenomena on transmission lines. The wave propagation
problem was basically solved by two techniques known as the Bewelys
lattice diagram [1,2] and Bergeron's graphical method [3].

The Bewelys Lattice diagram method uses reflection coefficients
calculated for waQe incident upon a discontinuity. Assuming a constant
reflection coefficient, the incoming wave is broken into a reflected and
a transmitted component. By keeping track of both components as they
traﬁel along the line, the voltage vs. time at any bus may be obtained.
As the complexity of power systems grew, it was necessary to adapt the
lattice method for solutions on digital computers ﬁsing numericél tech-
niques. The lattice method was implemented by,‘amongst others, Barthold
and Carter [4], and McElroy and Porter [5].

The Bergeron method is based on forward and backward traveling
waves, but solved graphically. This method uses linear relationships
between voltage and current. The Bergeron method was more suitable
for computer programs as it considers the terminal constraints of the
line. Mﬁny authors [6,7] have adopted this technique for transmission
line problems, but assumed the line to be lossless. Both methods

provided efficient pictorial techniques for the bookkeeping. In spite
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of the approximations involved in both methods (lossless lines with
constant parameters), the solutions obtained illustrated the main
structure of the phgnomena. |

Consequently, Dommel [8], after approximatiné the derivative by
first order backward difference, devised a consfant resistance 0/f7§)
and a current source equivalent circuit for the transmission line at
each end. Such equivalent circuits were decoupled. He also used the
past history of the traveling wave to compute the values of voltage and
current at each end. The program was essentially based on Bergeron's
method, but used numerical techniques instead of graphical techniques.
This program is known as the Electromagnetic Transient Program (EMTP),
originally developed by Dommel [8] and nurtured at the Bonneville Power
Administration by Meyer and Liu [9].

Some other programs have also been in use for solving power system
transient problems. The program METAP [10] uses a constant lumped
parameter model for the transmission line, and similar models for the
different equipment in the network. The connections between different
equipment in the network are handled by connection equations satisfying
Kirchhoff's circuit laws. Another such program is TRANSO [1l1l], which
uses Bergeron's method to simulate transmission line fransients. Each
lumped component is approximated by a stub transmission line of appro-
pri#te length and characteristic impedance. Both of these programs
have been (and are being) used to solve practical electric utility

problems.
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There are a few programs with a more generai applicability, which
have seen some use in power system applications. The program ECAP [12]
is used fairly wide as a circuit analysis tool. In many universities
and research organizations, it is used for solving electronic circuit
problems of small to moderate size. Although it could be used for
power system transient analysis, many of its features--including its
input and output facilities--are not convenient for practical power
system use. Although the digital approach has not supplanted the
traditional method of using miniature network models, it certainly has
the capability to solve transient problems efficiently and economically.
Many more options can now be examiﬁed because of the ready availability
of the computer program than would have been possible just a few years
ago. Certainly the trend seems to be towards an increasing role for
digital simulation techniques in transient analysis.

b. Approximating line losses Most of the transient programs

are only efficient for distortionless or lossless lines. Yet propaga-
tion on overhead transmission lines is far from distortionless and
approximations for line losses had to be found. Such appréximations
considered the line losses to be represented by a constant resistor at
each end of the line [13]. Some ofher researchers propose to divide
the line into two sections and include a resistance at both terminals
and between the two sections [1l4]. With these approximations, the main

line equations or section equations were solved as lossless lines. Most
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of these programs were originally written for single-phase networks, and
-then extended to three-phase configurétioﬁs. In the case of a single
line above earth, the effect of line losses is to attenuate and retard a
Qoltage wave traveling along the line. In more complicated three-phase
systems, mutual coupling exists between phases and second order changes
of voltage in each phase are functions of the voltages in other phases.
Losses in such cases cannot be represented by simply attenuating énd
retarding the voltages in each phase.

Matrix theory provided an approximate solution to the problem by
representing the line by a number of mcdes of prépagation, the voltages
of which travel independently of one another and free of mutual effects.
This approach is described by Wedepohl [15] and assumes that the line
parameters are frequency independent. Also it is assumed that the line
has symmetric configuration.

c. Frequency dependence of line parameters Attempts have been

made to approximate the frequency dependence of the line parameters.
Methods have therefore been developed for modifying Bergeron's method to
include the effect of frequency dependent parameters. Dommel and Meyer
[14] suggested that more past history points of the traveling wave be
weighted with an exponentially decaying weighting function. Mathemati~-
cally, this is done with a convolution integral. This procedure produced
an approximation for an attenuation and a distortion of the pulse as it
travels from one end of the line to the other.

Carroll and Nozari [16] suggested a method to obtain the character-

istic impedance and propagation coefficient of a single phase line in
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the frequency domain. Then applying the inverse Fourier integral, they
obtained a time function for the characteristic impedance and the propa-
gation constant to be used in a convolution integral with Bergeron's
method. The method was extended to include the ihree-phase transmission
line problem, but with equal mutual coupling between phases. 1In this
method, the boundary conditions are assumed to be known at the line
terminals.

As a summary, most transient analysis time domain computer programs
are based on Bergeron's method. The pfoblem was solved first for single
phase and lossless lines. Modifications have been made to approximate
losses and frequency dependent parameters. However, the fime domain
solution does not allow a direct method to account for the actual -
variation of the line parameters with frequency. The three-phase trans-
mission line is assumed to have equal mutual coupling between phases.
The difficulty in handling the boundary condition restricts the tech-
nique to special problems. For example, Carroll and Nozari [16] applied
the technique to study a fault on an open end transmission line and a
surge voltage traveling on a HVDC transmission line. Also, the time
domain solution requires large amounts of computer storage and computa-
tion time. Theoretically, time varying pafameters can be handled by the

time domain solution,

2. Frequency domain methods

For any power transmission line, only the shunt capacitance is
constant, whereas the resistance and the inductance are functions of the

frequency. The transmission line equations with frequency dependent
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parameters are still linear, which means that superposition technique
still applies. Laplace and Fourier transformati&ns therefo;e provide a
rigorous solution to the problem. Conceptually, the time varying volt-
ages and currents are transformed into the frequency domain to display
their frequency spectrum. Then for any frequénéy, the appropriate

line parameters are used and the response can be found. Finally, all
such incremental responses are added by means of inverse Fourier or
Laplace transformations back to the time domain, giving the total
response,

This idea of frequency-domain solution was applied to tramsient
problems in power systems in the mid 1970s. Jones and Aggarwal [17]
developed a digital simulation of a transmission line in the complex
frequéncy domain.. In this method, the transmission line was considered
ideally transposed with frequency dependent parameters. The faulted
transmission line was treated as a network of cascaded sections. Each
section was represented by a two-port transfer matrix. For example, a
transfer matrix represented the line section up to the point of fault,
another transfer matrix represented the fault discontinuity, and a third
transfer matrix represented the line section betﬁeen the fault and the
receiving end busbars. Ths multiplication of these matrices gave the
relationships between the currents and the voltages at either end of the
line in the frequency domzin. The inverse Fourier transform was used to
determine the corresponding time variation of the voltage and current of

interest.
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Triezenberg [18] developed a technique for simulating the trans-
mission line based on ﬁhe finite Fourier transform. 1In this technique,

a transformation of the spatial independent variable x (distance along
the line) is used. The final step of this technique uses state variable
methods and four transfer functions to approximate the relations between
the currents and voltages at both ends of the line. The four transfer
functions were characterized by eleven poles in the complex frequency
domain. This technique is similar to cascaded 7 or T sections of the
transmission line. This technique was applied to special cases because
of the difficulty in obtaining the boundary conditions at the fault loca~-
tion or at the sending end of the line. Also, this technique assumed

the line parameters to be constant and independent of frequency.

Although the frequency domain method offers a solution for the
frequency dependence of the line parameters, there is a difficulty in
handling the time varying parameters. In this technique, it has been
assumed that the line has equal mutual coupling between ﬁhases. Also it
has been common to assume zero fault resistance at the fault location and
a transmission line connected to an infinite bus. Some of these assump-

tions are invalid for certain studies.

B. Synchronous Generator Model
In order to make any review of the literature pertaining to synchro-
nous machines sensible, it is necessary to make some preliminary comments
about the machine per se. A three-phase synchronous machine has three
stator coilé that are as physically alike as is feasible within the

limits of manufacturing practice. These coils are oriented at 120° to one
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“another in space and are usually designated as a,b, c. The machine also
has a rotor that contains two shorted coils (damper windings) and one
coil excited from a DC voltage source (field winding). The self induc-
tances of the stator coils and the mutual inductances between the stator
and rotor coils are all functions of the angular displacement of the
rotor. The coil currents and the angular position of the fotor are the
dependent variables in the machine differential equations.

The machine equations are easy to formulate in these terms (this
formulation is said to be based on a-b-c coordinates), but the co-
efficients are functions of angular displacement, and the equations per se
are mathematically refractory. A4s a consequencé, a variety of trans-
formations have been developed to produce a more tractable set of
equations. The most important of these is the Park transformation [19] in
which the coordinates are designated (0-d-q). This transformation pro-

" duces a set of equations with constant coefficients. A second trans-
formation called the (0-1-2) transformation due to Fortescue [20] is also
available to simplify the analysis of unbalanced three-phase circuits.
This transformation does not pertain to the machine per se, but it can be
used in conjunction with the (0-d-q) transformation to solve machine
problems.

Generally, the Park transform cannot be used in fault studies with-
out going back to the (a-b-c) components. With the advent of modern
computers, numerical methods have been used for solving nonlinear
differential equations. In such cases, the direct three-phase (a-b-c)

nonlinear differential equations could be used for the study of
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synchronous machine performance during fault transients. Subramaniam
and Malik [2;] devised a fourth order Runge-Kutta method to sélve non-
linear machine equations in the (a-b-c) components. This method re-
quires considerable computational effort and its accuracy depends on the
step size. The difficulty in handling boundary conditions restricts the
method to the solution of special problems. Such special problems are
fault traﬁsient analysis of unloaded machines or machine connected to

an infinite bus (constant voltage with zero impedance).

‘As indicated in the last section (A), the frequency domain solution
has been used to account correctly for the distribute& nature and the |
frequency variatioﬁ of the line parameters. Therefore, it is desirable
to simulate the synchronous machines in the frequency domain. 'The works
of Ku [15] and Adkins [22] are typical and pertinent examples. ﬁoth used
the Park transform in describing the transient behévior of the,s&nchro-
nous machine. Ku analyzed a mechanically unloaded synchronous machine
transient due to a fault. Adkins described the transient behavior of a
synchronous machine connected to an infinite bus by assuming constant
rotor speed and equal mutual coupling between the rotor and the stator.
He indicated that the assumption of constant speed gives acceptable
accuracy during the first few cycles following the fault, and the rotor
swing may be safely ignored.

As a summary, most of transient analysis of synchronous machines
assumed known boundary conditions at the machine terminals. For
example, a synchroncus machine connected to.an infinite bus or unloaded

machine were common assumptions. The analysis of a fault transient on a
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transmission line necessarily requires recognition of the fact that the
line is connected to a machine. Subsequent reference is made to a
"simple" machine model: Basically, this consists of representing the
machine by a Thevenin's equivalent which establishes sending-end
boundary conditions. While this is mathematically convenient, it cannot
be rigorously justified in transient analysis; the line equations are
formulated in (a-b-c) coordinates, and the machine can only be repre-~
sented by a Thevenin equivalent in (0-d-q) coordinates.

One of the most important elements in this thesis is the development
of a set of transformations that make it possible to couple the machine
equations with the line equations. The only ad hoc assumption that must
then be invoked is based upon Adkins' [22] assurance that the rotor

swing during the first few cycles is negligibly small.
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ITI. TRANSIENT AND STEADY-STATE ANALYSIS OF TRANSMISSION LINES

The transmission line possesses‘a cértain inductance, éapacitance,
and resistance, so that these quantities are truly distfibuted over tens
or hundreds of miles. The main purpose of analysis is to determine
the magnitude of current and voltage at any péint on the transmission
line, and to transfer the greatest amount of usable power to the load.

The analysis is general for short, medium, and long transmission lines.

A. Formulation of Three-Phase Transmission Line Equations

1. Voltage equations

Figure 3.1 represents a section of a three-phase transmission line
with length Ax. The ground return of an overhead conductor is called
Carson's line [23] which is a single conductor dd” with length Ax

and parallel to the ground.

i, R L
a e—> AMA A B B A W
L, -
- b
i—, Rb . -
b 2 NAAAN Yy s
i R” Lc
5 —<>  AAQAA Y, ¢
| —— Ax : -
e P A L AL A AT ARl I R N S A A AT P SR S " S R " " " "
iy Ry La
de"7 __AAAA — Yy, q
id - —(:la + ib + ic)

Figure 3.1. A section of a three~-phase transmission
line with ground return
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The voltage equations of the three-phase transmission line are:

9 .
- 5 va(x,t) a (x t) + Laa Bt

(i (x,t) + Lab Bt ib(x t)

+ L~ (x t)

9
ac B & (x,t) + L7

ad 8t

-~ 3 - 9
+ Lbc ?t ic(x’t) + Lbd 52‘1d(x’t)

9 . 3
- 7% Ve “(x,t) = Lca e 1 (x,t) + ch 3¢ b(x t) + R 1c(x,t)
+ L” —a—l(xt)+L i, (x,t)
cc ot "¢ ed Bt d
-—a—v’(xt)-L ai(xt)+L (x,t) + L} 3i(xt)
3% Val¥s da 3t db at 1 de 3t

-!-R':1 1.(x,t) +de St d(x t)

The above equation can be written in a matrix form as

rv;(x.t) TR; : Ny ria(x,t)-
5 vﬁ(x,t) Rg 10 ib(x,t)
T = !
vc(x,t) R; : ic(x’t)
vé(x,t) 0 ' R? ; zx_t;
L 4 L b Ra | et |
FLaa Lab Lac ! L;d i (x,t)T
» » -» I »
Lia b Lpe 1+ Lig ) ib(x.t)
+ - - -~ ! » e (3.1)
ca ch cec | Lcd ot ic(x,t)
_______ -l - - - [ —
Yda Lap Ldc | Laa | 14(65t)
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or

9
) + Labcd ot abcd<x £).

9
~ox abcd(x t) = abcd ’ -ﬂ-'abcd(x t

Since vd(x,t) = 0, then equation (3.1) is reduced as

va(x,t) Ra ia(x,t) Laa Lab Lac' ia(x,t)
) - 9
"3 |t =| R 1,60 |+ Ly, Ty Ty | 5E [ 1000
vc(x,t) Rc ic(x,t) Lca ch Lcc . ic(x,t)
or
- (x,t) = (x,t) + L 2 (x,t)
ot —-abe'™? abc ab abc 9t abc ?
By dropping the abc
-2 y(x,t) =R i(x,t) + L & 1(x,t) (3.2)
ox -~ A’ - = 23 =\ .

In many physical transmission lines, wires are added above the phase
wires to '"shield" the line against direct lightning strokes. These ground
wires have an effect on the line impedance. The same previous steps can
be followed in obtaining the voltage equation in case of lines with one or
more ground wires, and the same final result as equation (3.2) can be

obtained.

2., Current equations

The nodal analysis can be applied to find the current at each phase

as
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-9 = 2 9_ -
Y ia Cag 5E v, (x,t) + G va (x,t) + Cab Nt [Va(x,t) vb(x,t)]

se,, 2 v, (t) - v (x,8)]

- 1 = Cpy me [V, 06E) = v (R, 0)] + Gy v, (6,6) + 6wy Gyt
+cC bc at [v (x,t) - v, (x,t)]
-?;"31;:1c=ccaat [v (xt)-v(xt)]+ch3t [v,(x,£) - v, (x,8)]

+ ch ;1 v (x,t) + G v (x t)

Figure 3.2. Capacitances and conductances in
three~phase transmission line

The above equations can be written in a matrix form as
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ia(x,t) ' Ga va(x,t)
- g%- ib(x,t) = Gb vb(x,ti
ic(x,t) Gc vc(x,t)

(cag +C +C,) -C; -C.e v, (x,t)

+ ~Cya (cbg+ CatCpe) “Cpe —322;:- v, (%5 t)

~Cea “Ceb (chi-chi-Cca) vé(x,t)

or

3
. Vabc(x,t) + C e — v, (x,t).

(x,t) = G abc ot abce

T x abc abce

By dropping the abc in the above equation as
-2 i(x,t) =G ¢ vixst) + € - 2 vix,t) (3.3)
ax_ ] - - L - at- ] . 3

By differentiating equations (3.2) and (3.3) with respect to x, and

substituting the values of é%-i and g%-g the results are

2
- f—f Y(6,t) = R 2= 1(x,t) + L o o 105,18
X
= R [G v(x,t) - C = v(x,t)]
R 3

L [-6 v(x,) - € 2 v, D))

a2 ' B v(x,t) |
- '—2' !(X,t) B _(_; Y(X,t) - B Q t Xy

ox

]
4

5 52
3 v(x,t) - L C ) v(x,t)

- L
- ot

1Q
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or
32 - 3
—= v(x,t) = R G v(x,t) + R C = v(x,t)
2 - - - - - =9t -
ox
5 3%
+ L .G 5= v(x,t) + L C — v(x,t)
- - ot - == 2 ~
-0X
In any power transmission line, the value of G is insignificant
(10_6 - 103), so it can be neglected and the above equations can be

written as

32 9 2%
—5 v(x,t) = R C = v(x,t) + L. C —5 v(x,t)
ax2 - T Tets =" e T
Also,
__3._2_1( t)=G-§— ( t).{.cj__i ( t)
2 =% = ax IV 2 3t ox L
ox
9
=G [-R i(x,t) - L 5 1(x,t)]
+C [-R 2 1(x,t) - L 2= i(x,0)]
¢ =R 3¢ 1(x, L 5¢ 16,
or
32 3
—= 1(x,t) = G R i(x,t) + C R 5= i(x,t)
2t G CRygd
X
3 52
+ G Lgpilxt) +CL—5 i(x,t)
ot

By ignoring the parameter G

52 5 52
_'2“ _j;(xst) = g 5 a_t' i(xst) + g E 5 i(xst)
ox ot

(3.4)

(3.5)
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Equations (3.4) and (3.5) represent the partial differential equations
of any three-phase transmission line where

is a (3x 3) inductance matrix in Henry per unit distance.

e

is a (3x3) capacitance matrix in Farad per unit distance.

[{o]

1=

is a (3x 3) resistance matrix in Ohm per unit distance.

1@

is a (3x 3) conductance matrix in Siemens per unit distance.

B. Calculation of the Line Parameters
A transmission line is characterized by four distribufed line
parameters, namely, R, L, C, and G per unit length. Usﬁally G has a very
small value (10_6 -~ 1080) and it is neglected. The inductance matrix L
in equations (3.4) and (3.5) can be obtained by using the equations in
reference [23] for any configuration of the line. The general expres-

sions of the series impedance of the transmission line with ground wire

are
v Dy
Zii = (Rii-Rd) + j (27f) k 1n 3;; ohm/unit length (3.6)
De
Z.,., =R, + 3 (2nf) k 1n — ohm/unit length (3.7)
ij d Dij
where
zii = gelf impedance of conductor i in ohm/unit length and the

diagonal terms of the impedance matrix.

Zij = off diagonal terms of the impedance matrix in ohm/unit length.

series line resistance in ohm/unit length

=
[
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DSi = gelf geometric mean radius of conductor i in ft. and for

cylindrical conductor DS = ,779 r ft.

Dij = distance between conductor i and conductor j in ft.

f = frequency in Hz.
k = constant which is chosen according to the user's units and its
values in reference [23].

1.588 x 1073 £ Ohm/mi.

“ g

R, = earth resistance

9.869 x 10~ ohm/km.

De is a function derived in reference [23] and it is equal to

2160 /% fe.

p = Earth resistivity

Equations (3.6) and (3.7) show that the impedance of the line is a
function of frequency. The numerical example in Appendix A is taken to
find the impedance matrix as in equations (3.6) and (3.7) ;t different
frequencies by using the computer. The results are shown in Figures 3.3
and 3.4, Figure 3.3 shows that the real part of the elements (1,1) and
(L,Z) of the impedance matrix increases rapidly with frequency. Figure
4.4 shows that the imaginary part of the elements (1,1) and (1,2)
decrease with frequency, but the varlation after 400 Hz. is insignifi-
cant.

Calculation of the admittance matrix of the transmission line is
also discussed in reference [23]. The capacitance of any three-phase
transmission line with ground wires can be calculated by using the

equation V = P q where
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Potential coefficient matrix in Farad_1 unit length

io
]

= Charge matrix in Coulomb per unit length

o

Voltage to neutral matrix

<
]

By using the subscript abc to denote the phase conductors, and the
subscript n to denote the ground wire, the voltage equations in matrix

form are:

Yabc P1I P2 qabc
- - = - -%— - - ’ (3.8)
Vn P3| P4 94

By knowing Vn = (0, equation (3.8) can be reduced to three equations to
present the three-phase voltage by eliminating the fourth row and columnm.

"The result is

-1

Vabe = (B3 = By B, B3) 4upe
= 2abc c-labc
here P =p, -p, p L 2
v Zabe ~ "1 " 254 i3

By dropping the subscript abc, then
vV==Ig (3.9)

P is a (3x 3) matrix and it is equal to the inverse of the capacitance

matrix. The elements of P are

P B—-!-—-l Ej‘.
11 2me 0 r

11.185 1n (;—) wrl.ont (3.10)
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RESISTANCE VARIATION
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8 , ' real part of Z(1,2) =
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Figure 3.3. Resistance variation with frequency
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N INDUCTANCE  VRRIATION
self inductance of Zgl,lgo
mutual inductance of Z(1,2) &

!
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Figure 3.4. 1Inductance variation with frequency
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: H : H,
P, =oi1n [=5) =11.185 1n (5] wrl.mi (3.11)
ij 27e D D..
ij ij
where
Hij = GMD between conductors and their images
Dij = GMD between conductors
and
ri = radius of the conductor

By finding the P matrix, then the capacitance matrix can be obtained from
c=rt
The adﬁittance matrix of the transmission line Y = juwC and it is
(3x 3) matrix for three-phase line. The computer program in Appendix B
is used to find the admittance matrix from the line configuration. The

calculations of impedance and admittance matrices are based on distri-

buted line parameters.

C. Transmission Line Losses
Any practical transmission line cannot be lossless and completely
tranéposed, and will usually be terminated at both ends as shown in
figure 3.5. Most of the existing fault transient programs neglect the

transmission line losses to simplify the solution of the line equations.

o [} -

Generating

B —

'
A L e

Figure 3.5. Practical transmission system
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Some of these programs have been modified to include the transmiésion
line resistance in their line model by different ways [24]. The analyses
of lossless lines have been discussed in many references as [25,26],
which are based on Bewley Lattice diagram.

A sudden occurrence of a fault on a power trénsmission line causes
a propagation of traveling waves toward both ends of the transmission
line. When the traveling waves reéch the ends of the transmission line,
‘they are reflected back to the faulted point. The line resistance
and the other losses tend to attenuate and distort the waveforms of
voltage and current. Therefore, the waveforms of the lossless line can-
not produce correct estimates of the magnitude of voltages and currents.

In the transmission of power, there are many other losses which caﬁ
be sfudied. The high electric field intensity surrounding high~voltage
power lines accounts for an additional energy loss in the transmission
line. The high voltage gradient at the surface of a wire sometimes
accelerates electrons in the air sufficiently to ionize air molecules by
collision. If the voltage gradient at the wire exceeds a certain
| critical value, the process of ionization becomes cumulative and results
in appreciable loss of energy. The ionization is characterized by a
faint glow surrounding the wire aﬁd is called corona. The critical
voltage depé;ds on wire size, spacing, and on atmospheric conditions.
Corona is most likely to occur when the diameter of the conductor is
small compared to the distance between wires. High voltage, small
wires, and close spacing contribute to a high voltage gradient which may

introduce corona. Damp weather increases the loss from corona, and a
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rough or dirty surface on a conductor iﬁcreases the probability of the
occurrence of corona. Empirical methods for the calculation of corona
loss are available in many references [27] and it is usually small.

Another loss occurring on transmission lines is caused by the
leakage of current at the insulators which support the lines at the
towers. Since leakage at insulators of overhead lines is negiigible and
corona loss is usually small, also the conductance between conductors of
overhead lines is assumed to be zero.

In a transmission line there is a nonuniformity of current distri-
bution in addition to that caused by skin effect. In a two-wire line,
slightlj fewer lines of flux link the elements nearest each other on
opposite sides of the line than link the elements farther apart. There-
fore, elements in the near sides have lower inductance than elements on
the far sides. The result is a higher current density in the element of
adjacent conductors nearest each other than in the elements farther apart.
The effective resistance is increased by the nonuniformity of current
distribution. The phenomenon is known as proximity effect. The increase
in resistanée depends on the frequency, distance between conducﬁors,
conductor size, and permeability. Proximity effect is present for three-
phase'as well as single-phase circuits. Even at high fréquencies, if the
ratio of spacing between wires to the radius of the wires of a two-wire
line is greater than 15 to 1, the increase of resistance due to proximity
effect is only 1% as discussed in reference [28]. Usually the proximity
effect is not introducing error in determining the resistance and it is

neglected.
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Skin effect phonemenon:

A uniform distribution of cﬁrrent throughout the cross section of a
conductor exists only for direct current. As the frequency of alternat-
ing current increaées, the noﬁuniformity of'distribution becomes more
pronounced. An increase in frequency causes more current to be concen-
trated near the surface of the conductor and less in the interior. This

phenomen is called skin effect.

Skin effect resistance ratio:

The internal impedance of a conductor is composed of resistance and
inductive reactance, The real part of the complex impedance is the
effective resistance. The method of calculating the effective resis-

tance of the line is discussed in many references [23,28] as

R =20 ber (mr) * bei émr) —bei(mr; * ber” (mr) ohm/unit length
L (bei”(mr))“+ ber”(mr))

The d-c resistance Ro for a round conductor is

R, = p°/A = p’/Trr2

The ratio of effective resistance to d-c resistance is

_ mr per(ur) «bei” (mr) - bei(mr) -ber’ (mr) (3.12)
(bei” (mr))2+ (bexr” (un:'))2

vl
nr = r¢—2%§—“- = ,0636 F XL

R'O

R/Ro = g}

where

R, = d-c resistance in ohm/unit length
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radius of the conductor -

a}
it

relative permeability of the wire

=
it

The functions ber, bei are complex functions, and ber~”, bei” are their

derivatives as

ber(mr) =1 - (mr)4 (mr)B o ommmmmm e
22.42 22.42. 62. 82
2 6
bei(mr) = (m;) - z(mr% 54 mmemm e
2 27 4%« 6
- 1 d
ber’(mr) = d(mr) ber(mr) == a;—ber(mr)
.. 1 d
bei“(mr) = d(m ) bei(mr) = o 3;-bei(mr)

The variation of oR with the frequency is plotted in reference [23].
This variation cannot be neglected particularly in large conductors

because of the skin effect.

Skin-effect inductance ratio:

The imaginary component of the internal impedance of a conductor is
the inductive reactance due to internal flux linkages. The expression
for internal inductive reactance is in reference [22] as

L = p’m bei(mr) « bei”(mr) +ber(mr) « ber” (mr)
Why T 29 2 - 2
(bei(mr))” + (ber”“(mr))

ohm/unit length

“If Lio is the internal inductance at frequencies so low as is

equal to é%, then the ratio of internal inductance of a wire at any

frequency to internal inductance is
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i SR
L L or (bei” (mr)) 2+ (ber” (mr))?

That ratio approaches unity as the frequency approaches zero.

i 4 [bei(mr)- bei’(mr)ﬁ-ber(mr)-‘ber‘(mr)]

(3.13)

As the

frequency increases, the ratio becomes smaller, for skin effect causes

the current to crowd toward the surface of the wire and thereby reduces

the number of internal flux linkages. Tabulated values of skin effect

inductance ratio are available in many references [28]. Therefore, the

self and mutual inductances can be obtained by taking the skin effect

into consideration as

2 Di eaL
LS = K [1In (——5-1————-) - 1] Henry/unit length
si
2 D,, 'L
L =K|[In (-——jj————-) ~1] Henry/unit length
m GMD
where
Ls = gelf inductance
Lm = mutual inductance
Dij = distance between conductor i and j
GMD = geometric mean distance

K = constant depends on the units used

Dsi = gelf geometric mean distance of conductor i

(3.14)

(3.15)

The skin effect inductance ratio is less important than the skin effect

resistance ratio in the total impedance of the line.
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The calculation of the impedance matrix of a three-phase trans-
mission line is obtained by using two methods. The first method is based
on Carson's line by using equatioﬁs (3.6) and (3.7) and the second method
uses equations (3.12), (3.14), and (3.15) which are derived from
Maxwell's equations. The waveforms of voltage and currentvwere obtained

by using both methods.
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IV. GENERAL EQUATIONS AND SOLUTION FOR FAULTED POWER
TRANSMISSION SYSTEMS
As previously discussed, the line is untransposed with frequency
dependent parameters. Based on this model, the solution of voltage and
current can be obtained by solving the partial differential equations of

the transmission line, i.e., equations (3.2) and (3.3).

v v v

sl r s2
l 1 e ) I
| IS |

8 P&——— xl e x2 4 Sy
e L — >

Figure 4.1. Single line diagram of faulted transmission systems

Figure 4.1 defines the voltages at the sending end, receiving end,
and the fault location. These are designated Vi1r Vg2 and v, respec-
tively. The fault is located at distance x1 from the sending end, and at
distance x2 from the receiving end. Therefore, the total length of the
line & is equal to (x1 + x2).

By applying Laplace transform with zero initial conditions to

equations (3.2) and (3.3), the following are obtained:

..-(%2 V(x,8) = R L(x,8) + sL I(x,s)

= 2(s) L(x,s) (4.1)
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- ﬁ%’{(x,s) = sC V(x,8)
= Y(s) V(x,s) | _ (4.2)
where |
Z(s) =R + sL
¥(s) =s C
s = a+ jw

The second derivatives of equations (4.1) and (4.2) are

2
jLE V(x,8) = -Z(s) é%-l(x,s)
X
= 2(s) Y(s) V(x,s)
. 4 V(x0) (4.3)
and
a2 - d
—5 L(x,8) = -¥(s) 3= V(x,8)
dx
= Y(s) z(s) I(x,s)
- 4 1609 (4.4)
where

A = 2(s) Y(s)
A% = 1(s) 2(s)

Since Z(s) and Y(s) are symmetrical matrices, then A will be a symmetrical
matrix if and only if Z and Y commute.
Equations (4.3) and (4.4) are coupled. They can be decoupled by

using a modal-transformation [1l5]. In the case of an untransposed line,
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the eigenvalues and eigenvectors vary with frequency, and the modal
transformation matrix has to be calculated at each frequency.

The matrix solution is “ased on a linear transformation of voltage
and current, so the second-order differential relationships will involve
diagonal matrices only. Mutual effects can be eliminated by using the
following method.

If 8 is the voltage-transformation matrix, and Q is the current-

transformation matrix, then the modal voltage and the modal current can

be defined as
vi=sly (4.5)
1t = Q‘1 1 : (4.6)

As S and Q matrices are neither orthogonal nor unitary, then neither § §t

nor Q gt is diagonal. But, since S and Q are mutually orthogonal, then
the products

Q" s =5

to=0 (4.7)

are diagonal. The transformed impedance and admittance matrices are.also

diagonal, i.e.,

slzq- D, : (4.8)

and

¢tys=p | ¢4.9)

The product of the transformed impedance and admittance matrices commute.

2

This product is the propagation matrix EZ, i.e., ]_)z Py = ]—)y 1_)z = ['",
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If S is chosen as the matrix of the eigenvectors of matrix A, and Q
is the matrix of the eigenvectors of matrix ét, then the matrix product
gt S can be chosen as a diagonal matrix D or as an identity matrix [24],

or

Q=1s"1"t (4.10)

By diagonalizing the matrices A and éF in equations (4.3), (4.4) and
transforming the phase voltage and current into the modal voltage and

current, the following relations are obtained:

2

v e = s A s s (4.11)
dx :

and
a? 4 -1t . o+
—5 I(x,8) =Q ™ A" QI (x,8) (4.12)
dx

The products of §-1 A S and g_l ét Q are diagonal matrices where the

diagonal elements are the eigenvalues. These eigenvalues are complex and

vary with frequency, i.e.,

Yi,0 "%, Y38y » 11,23
where
Yi,i = propagation constant
o 4 = attenuation constant in nepers per unit length
31’1 = phase consfant in radians per unit length

Figures 4.2 and 4.3 show the variation of oy 4 and Bi i with frequency.
L] t Bsd
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Figure 4.2, Variation of attenuation constant
in nepers/unit length
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VARIATION OF PHASE
PHABE CONST. (1)
PHASE CONST. (2}
PHRSE CONST. (9)
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Figure 4.3. Variation of phase constant in
radians/unit length
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Equations (4.11) and (4.12) can be written as

2

da o+ _ + 2 4+
dxz Vi(x,8) = Ez Qy Vi(x,8) = T° V (x,s)
iii-l+(x s) =D p 1T = r? ¢t
PEE RS

(4.13)

(4.14)

Equations (4.13) and (4.14) are fully decoupled and the solution of

these equations can be obtained as
V+(x,s) = Al exp(-T x) + Bl exp(l x)

I+(x,s) = Cl exp(-T x) + D1 exp(l x)

(4.15)

(4.16)

Where Al, Bl, Cl, and D1 are determined by the boundary conditions.

Refer to Figure 4.1, at x=0

Y+ = Yr and I+ = £+ , consequently
v = Al + B1
—r——
+
Ip=g+nt

Also at x = x1
+ _ + _ o+
v Ysl and I ;81 , then

Y:l = Al exp(-I' x1) + Bl exp(T x1)

I+

I." Cl exp(-T x1) + D1 exp(l' x1)

By differentiating equations (4.15) and (4.16) with respect to x,

(4.17)

(4.18)

(4.19)

(4.20)
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:i%; _\_’+(x,s) = -T' Al exp(-Tx) + I' Bl exp(I'x)
= _Qz .];T(x’g) (4.21)
and
d -+ '
T I (x,8) = =T Cl exp(-Tx) + I DI exp(T x)
= _Qy Y+(x’s) (4.22)

At X=0, equations (4.21) and (4.22) became

= Vo = -T Al + T Bl = T (-Al+ Bl)
+
= —]_)z Irl (4'23)
and
d 1 o r g+ r
& hy =T @+ IDl=TCcl+o
_ +
=-D ¥, (4.24)
Equations (4.23) and (4.24) become
tt -t rur-m | ' 4.2
I, =D,7 I (A Bl) | (4.25)
vt =p1lp (c1 - D) - (4.26)
—r —y - - - *

Finally, equations (4.19), (4.20), (4.25), and (4.26) can be combined to

obtain Al, Bl, Cl and D1 as

ar=31rtp, 1 +vh) | | (4.27)
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1 ..+ -1 +
El 2 [Yr - L Bz l-'rl ] (4.28)
1 -1 + +
Cl = 7 [T Py V. + 1,41 (4.29)
_1 + _ -1 +
D=5y -0 D V] (4.30)

By substituting Al, Bl, Cl, and D1 in equations (4.26) through (4.30) the

voltage and current equations at the sending end become

or

where

Both D
-c

Also,

+ _ 1 -1 + +
Ysl T2 [Ev ]-)-z Zrl + Yr ] exp(-Exl) +
1 -1 + +
30-0 7D, Ly *+V, 1 exp(Txl)
1.-1 +
= 3_-1_" l_)z [exp(-T x1) -exp(T'x1)] Itl +
1 +
3 [exp(-T x1) + exp(I'x1)] Vr
+ + -1 +
Ysl = ]-)cl Yr + I I-2z l--231 Irl (4.31)

1’

l .
Dcl = cosh (Yi,i x1) = 7 [exp(—Yi,i x1) + exP(Yi,i x1)]
i1

=1 IV - '
Dsl sinh (Yi,i x1l) = 5 [exp( Yi,i x1) exp(Yi’i x1) ]
i,1
are diagonal matrices.

-D-sl
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+ _ 1 -1 + + _
Isl ) (L l-)y ‘—’r + Irll exp(-T x1)
1 -1 + +
+ 5 [-T gy Yr + Irl ] exp(}’xl)
= L lexp(-Tx1) + exp(Tx1)] 1T
2 - - =rl
+zr7t D, [exp(-Ix1) - exp(Ix1)] v
or
+ _ + -1 +
I "2 iy *+I By Be1 ¥r (4‘32)

Since Z, Qz’ and I_)y in equations (4731) and (4.32) are diagonal matrices,

then
rlp -p r-1t
and
e rh-atstze @tyseh
=rtetzyprt
arttanrt
-rtr?rt
=U (identity matrix)
-1 + -1 +. -1
So, if T D =§°, then QyI_‘ = (go)
Equations (4.31) and (4.32) become
vY¥asp, vieztp 1 (4.33)

-sl =cl -r " S0 =gl =rl
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Is1 " D1 I

+ -1
+2H)7
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sl

v

+

Equations (4.5) and (4.6) are used to transfer the modal variables back

to the phase variables.

The sequence of transformations begins with

~ T -1
YS]. = -S- ]-)Cl § Yr 3 § éo P‘Sl g Irl
but S25 =SI sz Q
-1 -
=sstzor™t
=zqr™!
oY
sz =sszor™
-sr st
=Z,9
where Z =SI" sz
then,
V.=@p.sHv +z oqp.qQhH1
-sl = *=cl = -1 -0 = ~gl 2 ~rl
and
-1 + -1 -1
Esl Q ch Q Erl + Q(Eo) 2sl § Yr

Since §;' and Esl are diagonal matrices, then

+ -1

PR PR ICA

-0 -sl

and

+y-1

(4.35)
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+-1 -1

eH™tsteat stz
-GrtszeT
cqtsrlglpyt
=gzt
Then,
I, =@D, h I,+ @D, 9‘1 gc;'l) v, ' (4.36)

Equations (4.35) and (4.36) are used to find the phase voltage and current
at the sending-end in the s-domain.

The receiving-end equations are based on the boundary conditions at
the fault location and at the receiving-end.

From Figure 4.1, at x=0

vev, , I=L

Y1: =r2
and at x=x2
V=V, » I=1I,

The same procedure used to derive (4.35) and (4.36) produces the receiv-

ing—-end equations

L+ (22D, ) I, (4.37)

I,=@QD,Q 1, IL,+ @D, g Y (4.38)

where
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Dc2

cosh (y, . x2)
1,1 i1

D sinh (Yi 1 x2)
]

sZi’i

The sending-end voltages and currents or the receiving-end voltages
and currents can be obtained by using the above equations if Yr’ Erl’ and
Irz
specified. This boundary condition depends on the type of fault. There

are known or if the boundary condition at the fault location is

are four types of faults: three-phase fault, single-line-to~ground
fault, line-to-line fault, and double-line-to-ground fault. Methods of
finding the boundary condition at the fau1t location‘for each type of

fault will be discussed in the next chapter.
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V. BOUNDARY CONDITIONS AND SIMULATION OF
FAULTED POWER SYSTEMS

In order to apply the equations developed in the previous chapter,
it is necessary to develop a general technique for modeling a fault, and
to specify the boundary conditions at the ends of the line. Once these
factors have been dealt with, simulation of the line transients is
largely a matter of developing a computer program and applying it. A
general fault model is developed in this chapter, Boundary conditions are
specified at the terminals, and the fault transients on a hypothetical

transmission line are simulated.

A. The General Power System Simulation

A power system consists of three primary components: The generating
system, the transmission line, and the load. Chapter III was concerned
with modeling the‘transmission line in detail. For the purposes of fault
transient amalysis, all that really needs to be done with either the
generator or the load is to characterize them sufficiently well to impose
realistic boundary conditions upon the line differential equations. In
this chapter, conventional models for each are used. It is also
necessary to simulate a line fault. Simulations for the load, the trans-
former, the generator, and the fault are described in the next two

subsections.

l. Load, ggnerator; and transformer simulations

The load is connected at the receiving-end of the line. This load

is represented by a constant impedance (Rz, Lz).
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The transformer and the generator are connected to the sending
end, The transformer is represented by a series impedance‘(Rtr, Ltr)'
The synchronous generator is represented by the Thevenin equivalent
(constant voltage behind a transient impedance). One of the most
important conclusions of this thesis is that this generator model is
inaccurate in transient analysis particularly when the fault is near the
generator. This model is in fact widely used, and is only involved here
for comparative purposes. The next two chapters develop a more acéurate
technique for dealing with the generator, and subsequent work compares

the results obtained by two processes.

2. Fault simulation

Fault initiation is simulated in the following manner:
a. The voltage Ve at the fault location is calculated just prior
to the instant of fault inception.

b. Define a fault voltage (vf)

ve = -u(t) v

‘where the fault' is  stipulated to ocecur at time t=0.

c. The fault per se is simulated as a resistance in series with an
inductance.

d. Construct the circuit shown in Figure 5.1 at the fault
location.

For t <0, 1. = 0. For t > 0, the state of the line can be deduced

£
by using superposition; i.e., two separate calculations (steady-state

and transient) are performed. The steady-state and transient solutions
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X
—_— -———
irl ir2
R
ifl £
Ly

Figure 5.1. Fault simulation

are discussed in the next section. The superposition of the steady-

state response and the transient response gives the total response.

B. Formulations of Boundary-Condition Equations

1. Steady-state solution

The voltage and current equations at any distance x from the re-
celving end are similar to equations (4.35) and (4.36). These

equations are:

Yx =5 l-)cx 5 Ysz + §° Q -8X Q IsZ (5.1)
o -1 -1
I,=9D, Q9 I,+QD,Q272, Vg, (5.2)

where:

S and Q were defined in Chapter IV
Dcx = cosh (Yi,ix)
i,1
sz = ginh (Yi,ix)
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Ysz and £s2 are the prefault voltages and currents at the receiving

end bus.
Yx and Ix are the prefault voltages and currents at distance x
measured from the receiving end bus as shown in Figure 5.2.

-1 -1

=87T S Z
-0 - - - -
rf=stas=9ta%g
A =z
Z =R+ juL
Y = jug
w = 120w
V AY
|31 i+di 1 s2
— T 1
a ¥ ' a’
l o |
[} )
sl —>dx <+ X ———> 2
e 2' ___..’

Figure 5.2. A schematic diagram for a transmission
line of phase a '

For subsequent work it is useful to specialize (5.1) and (5.2) to per-

tain to the sending end. The result is

) -1 -1 |

Vaa = 5 Do 8 Y32 +2,QD.,0Q I, (5.3)
-1 -1 -1

Is1 5905 Q I+ Q0,0 2,7 ¥y (5.4)
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where
D, = cosh (Yi,i L)
i,i
Ds% = ginh (Yi,i )
i,i

The line parameters and the line configuration are known, the computer
program in Appendix B can be used to find the prefault voltages and

currents at any location on the line at 60 Hz,

2. Transient solution

Transient analysis is based upon the circuit shown in Figure 5.3.
This circuit is derived by using the fault simulation in Figure 5.1 with
the steady-state voltage, Vs properly removed. The voltage at the

fault location is
V.(s) =R L. (s) +sL. I (s) + V.(s)

or

V. =% Lo+ ¥, (5.5)

where:

=
i

£ fault resistahce

L_. = fault inductance

Z.=R:.+s Ef which 1s a (3x 3) diagonal matrix

f

<
(]

superimposed voltage with all other sources properly removed

[
[

fault current which is equgl to <Irl + Irz)

From Figure 5.3, the sending end equation with the source voltage

removed is
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LF
L
Lté 9
Ve
77T
< x1 »le x2 >

Figure 5.3. Simulation of a faulted power system with only super-
imposed voltage and all other voltage sources properly
removed

V() = =R, + s L) L)

or
Ysl = -Zt lsl ' : (5.6)
where:
Et = total resistance of the generator and transformer
Et = total inductance of the generator and transformer

gt = Bt + s Et which is a (3x 3) diagonal matrix

Similarly, the receiving end equation is
Vga(s) = ~(Ry + 8 Ly) Lg,(s)

or

Va2 = %y Lso (-7



Ez = Joad resistance matrix
Ez = load inductance matrix
ZR = Rz + s Ll which is a (3x 3) diagonal matrix

Using equations (4.35), (4.36), and (5.6) to eliminate Ysl and Isl

produces
V.=(SD s'l)v +(Z QD Q'l) T
-sl - =cl - -r -0 = =gl = =rl
_ -1 -1 _-1
= -z, Q@ Dcl Q™ Erl +Q 2sl 2 -0 ) -r]
Thus, by rearrangement,
-1 -1 _-1 -
(s Dcl R Zt Q -sl Q Zo ] Yr -
: -1 -1
- [Zo Q sl Q-+ Et Q ~cl Q] Irl
or
L% =5 I, (5.8)
where:
' _ -1 -1 .-1
Il § ]-)cl _S. + Zt g _sl 9 -0
and
1 =1
I,=2,8D,Q"+2 QD Q

Also, by using equations (4.37), (4.38), and (5.7) to eliminate

Ysz and 132’ we find

- -1
-c2 £ vr + (go Q 232 Q) IrZ

: -1 -1 -1
= -2, (@D, T L+ @D, 9 2, ¥,
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This can be rewrittem in the compact form

I3 Yr = —I4 IrZ

where:
_ -1 -1 _-1
23 = § -c2 .S.. + g.ﬂ, g ...32 9 Zo
aﬁd
_ -1 -1
24 -0 Q -s2 Q + ZQ Q -c2 Q

_ -1

1:1'1 - 23 Il Yr
_ -1

5;2 B 24 22 -r

(5.9)

(5.10)

(5.11)

The voltage Yr at the fault location depends on the type of fault.

Methods of finding yr for each type of fault are discussed in the next

section.

1.

C. Voltage at Fault Location for Different Types of Faults

The four possible types of faults are designated by
1. Three phase to ground fault (3LG)

2. Single line to ground fault (SLG)

3. Line to line fault (LL)

4, Double line to ground fault (2LG)

Three-phase to ground fault

For a three-phase fault, the voltage at fault location in the s-

domain is
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“«——- "ra

) fta ¥ bV
i %
I.|. f ‘f .
vfné fbd‘B ;‘
- = ':l:

-n

_,a:l
=3
T

Figure 5.4. Three-phase to ground fault

Yy =% e+ Y

and If = Irl + Zr2
therefore:
Ve =% Ly * Lpp) + Y (5.12)

By substituting Irl and IrZ in equations (5.10) and (5.11) into equation

(5.12) we obtain

7 (7™ o -1
Yy = 20T I - L, I Nt Y
then,
Ve = [U+ 2, T1V,
or

-1
Vv, = [U+z, 17 ¥ (5.13)

where U is an identity matrix and

-1 -1
T=I, L +1 T
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2. Single line to ground fault

By assuming the fault on phase a, then the boundary conditions in

the s-domain are

Ifa = Irla + Ir2a
Iegp =0
Ifc =0

Depending on the above boundary condition, the fault current is

- t
Ig =1l 0 0]
= Erl + ErZ (5.14)
i v i
a ._;£;§===T£§;========£za
v
b rb
v
re
c B
l Te ¥ iep=0 lifc=0
i
fa i
f
Vfa

Figure 5.5. Single line to ground fault (a)

By substituting Irl and ;rZ from equations (5.10) and (5.11) into

equation (5.14) as

-1

-1
Ig=-[1," T, +T," T;] V.

= =TV
= -r
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then

where H = I-

Equation (5.15) can be written in a matrix form as

1Vra [H),  Hyy Hyg g,
Vo l= |8y By Hylfo (5.16)
Ve Hyy Hy, HygfO
L . - Ju J
or
Vea = "H11 Lea
Vo = “Ho1 lga
Vie = 73y Igg
then

t
Ve = -y Hy HyloIg, (5.17)

Ifa can be obtained from the voltage at fault location of phase (a) as

shown in Figure 5.5

Vra = Vfa + Zf Ifa
= -Hll Ifa
-\ :
fa :
La "6 +2 - (5.18)

11 £
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By finding Ifa from equation (5.18), then V. can be obtained by applying

equation (5.16).

3. Line to line fault

By assuming the fault occurs on phases b and ¢, then the boundary

conditions in the s-domain are

Ifa =0
Ly = Ige
=Lap ¥ Lo
a
b
C
ir2c

Figure 5.6, Line to line fault (b-c)

Depending on the above boundary condition, the fault current is

_ L t
I =100 I -Igl
=1, +1, | (5.19)

By applying equation (5.15) to obtain Hr as
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[Vea Hip Hyp Hgg|} 0
Vib | T TP Hyp Hygf| Ig (5.20)
Vee Hyp Hyy Hysl)-Tgy
- - L -J e J
Via = (B3 = Hyp) L
Vep = (Hyg = Hyp) Tgp
Vee = (H33 = Hyp) Tgp
then,
Vib = Vpe = (Hyg = Hyp = Hyg + Hyp) Ipy (5.21)
From Figure 5.6:
Vo -V =V - Ve + 2 I (5.22)
From equations (5.21) and (5.22), Ifb can be obtained as
I. = Vfb - Vfc . (5.23)
fb (Hyy = Hyy — Hyg + Hyy = Zp)

By finding I_.. from equation (5.23), then Yr can be obtained by applying

fb
equation (5.20).

4., Double line to ground fault

When the fault occurs on phases b and ¢, then
Ifa = 0

or

I,=f0 1, 1.1% (5.24)

£ fb fc]
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v
ra

l i. =0 4
fa rlb v

b b -t——
. T *rlc o rC Lroc
R
ieh l Re lfcl £
L
L, f
VEb Ve

-

Figure 5.7. Double line to ground fault (b-c)

By applying equation (5.15) to obtain Yr as

p— - = - - -

Via Hy; Hyp Hygfio

Vo= “{Ha1 Haz  Hygf|Igp
Vee Hyy Hyp Hyglilel
L .J L o L J

Vrb and Vrc can also be obtained from Figure 5.7 as

Vb = % Igp * Vg

=2, I. +V

Vrc f “fc fc

From equations (5.25), (5.26), and (5.27), then

Z.1

£ Igp + Vg = =(Hyy T +Hyo 1)

2. I +V_. =-(H

£ Ige * Ve 32 Lgp * Hyg Tgo)

By solving equations (5.28) and (5.29) to obtain Ifb and I;, as

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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-1

Ifb = —-—H32 [(zf + H33) Ifc + Vfc] (5.30)
1, =i [(Z. + H,,) I. + ] (5.31)
fo T H,, Pt H22) e Ve y
Elimination of Ifc produces
-1 -1 1
I, =—{(Z. +8, )= (Z. +H,,) I, ~—=—V + Vv, }
Tfb T Hy, f 33 [H23 f 227 “fb H,, fbf " “fe
or
. ~(Zep Vep + Vo) (5.32)
fb  Z., (zf + H22) + H,,
where

-1
=== (Z. +H
£t~ Hy, f

7 33)

From equation (5.31) and (5.32), Ifc can be obtained. Once I and L.
are obtained, then Yr can be obtained from equation (5.25).
Methods foi finding Yr for each type of fault are written as sub-

routines in the main program in Appendix B.

. Fault Transient Waveforms
The currents at the fault location (lrl’ lrz) are obtained by
applying equations (5.10) and (5.11). The voltage and current at the
sending end can also be obtained from equations (4.35) and (4.36). This
process for ﬁransforming the transient solution from the s-domain into
the time domain is discussed in Chapter VIII. The total solutions of

voltages and currents at the fault location and at the sending end are
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obtained by adding the transient solution to the steady-state solution
in the time domain.

Appendix B consists of a computer program for nﬁmerical analysis of
the various boundary value problems posed thus far. The program is
general, and can be used for any line length, configuration, or fault
type. Appendix A describes a hypothetical power system to be used for
program testing and determining the relative importance of the various
parameters that are or may be important in fault transient analysis.
Figure 5.8 to 5.11 show some of the results obtained by simulation of
the system described in Appendix A. In particular, Figures a ahd S in
5.8 to 5.11 show current and voltage waveforms at the sending end that

ensue from a fault at the middle of the line.



-0.40

PU VOLTAGES

-0.80

4? THREE PH. F.RT X1

SEND. END. VGE VA
SEND. END. VGE v8
9END. END. VGE VC

+p0

99

1 1 U 1 U
.ag 2.40 2.80 3.20 3.60

1 T 1
Q.00 ag.uo Q.80 .20 .60 2
“TIME 1N SEC. ot

Figure 5.8a. Sending-end voltages for three-phase-to-gound fault
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Sending-end currents for three-phase-to-ground fault
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SLG fault
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Figure 5.9a. Sending-end voltages for single-line-
to-ground fault on phase a
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SLG fault
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Figure 5.9b, Sénding—end currents for single-line-
to-ground fault on phase a
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SLG fault
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Figure 5.9c. Voltages at the fault location for single-line
to-ground fault on phase a
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Figure 5.9d. Currents i, at the fault location for single~-
line~to-ground fault on phase a
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Figure 5.10a. Sending-end voltages for line-to-line
fault on phases b and c
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Figure 5.10b. Sending-end currents for line-to-line
fault on phases b and c
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Voltages at the fault location for line-to-line

fault on phases b and c
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Figure 5.10d. Currents 1.y at the fault location for line-to-=line
fault on phases b and c



78

LU VOLTRGES

2.L.6. FAULT AT X1
8END. END. VGE VA
SEND. END. VGE vA
9ENO. END. VGE VC

-2.40

— ) T
2.00 2.50 3.00

| . 1 I
050 LA IN st BT i

Figure 5.l1la.

Sending-end voltages for double-line-to-
ground fault on phases b and c
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Figure 5.11b. Sending-end currents ig for double-line-to-
ground fault on phases b and c
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Figure 5.1lc. Voltages at the fault location of double~line-to-
ground fault on phases b and c
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Figure 5.11d. Currents i 1 at the fault location for double-line-to-
ground fauit on phases b and ¢
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VI. SYNCHRONOUS MACHINE EQUATIONS IN FREQUENCY DOMAIN

In the previous chapter, the generator and transformer were repre-
sented by a constant source behind a transient impedance. This repre-
sentation is so commonly used in transient analysis that it can be con-
sidered to be classical or standard. It is also subject to criticism;
the very fact that a distinction must be made between "transient" induc-
tance and steady~-state inductance is tacit recognition that the generator
is an inherently nonlinear circuit element which can only be represented
by a Thevenin equivaient under rather special consitions.

This research suggests that the errors introduced into transient
analysis by use of the classical model are negligiblé when the fault is
remote from the generator. When the fault is near the generator, these
errors are significant.

' This section develops a sequence of transformations that make it
possible to couple the generator equations with the line equations in
the frequency domain. This eliminates the errors that arise when the
fault is near the generator.

Reference [29] described the full-machine model in the time domain.
The model is shown in Figure 6.1 where: aa”, bb”, and cc” are the three-
phase stator sindings, FF” is the field winding, and.DD’ and QQ° are the
damper windings.

The flux linkage equations in matrix form are



d axis

q axis

Figure 6.1. TFull model of synchronous machine

1
Aa Laa Lab Lac 1 LaF LaD LaQ ‘a
|
b Loa b be ! Lor Lop Dol b
lc ca ch Lcc : LcF LcD LcQ ic
— =] e e - e e o e + ——————— p—
! 1%Fa “m re| Trr U Uro||lr
|
) Lpa pb Ipe ! Ior Lop Ipgf{'p
A L. L. | L L 1
Q Laa “ob qcy Lor ap oo | e
or
Aabc LSS LSR iabc"l
|
Areq Legs v Ler || irpo
where

LSS = gtator-stator inductances

Ls and LRS = gtator-rotor inductances

R

(6.1)
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LRR = rotor-rotor inductances

The elements in the inductance matrix in equation (6.1) are identified

in reference {29] as

Stator self-inductances:

L =L + L cos 26 H
aa s m
Lbb = Ls + Lm cos 2(6 - 2m/3) H
L =1L +1L cos 2(6 + 21/3) H
ccec 8 m

where LS and Lm are constants

Rotor self-inductances:

LFF = LF H , LDD = LD H, and LQQ = LQ H

Stator mutual-inductances:

Lab = Lba = —MS - Lm cos 2(0 + m/6) H
Lbc = ch = -Ms - Lm cos 2(6 - 1w/2) H
Lca = Lac = -MS - Lm cos 2(6 + 5n/6) H

Rotor mutual-inductances:

Lep =Ipp =¥z H

Mutual inductances between the stator and the rotor

LaF = LFa = MF cos 6 H
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L .=L, = MF cos (0 - %g) H

bF Fc
= 2w
LcF = LFc - M, cos (6 + 3 Y H
LaD = LDa = MD cos B H
| = cos (6 - Zn H
v = b = Mp 3
L.=L_ = cos (O + 2m H
cD Dc MD 3
LaQ =.LQa = MQ sin 8 H
C v e o
LbQ = LQb = MQ sin (6 - 3 H
Sy e 2m
LcQ = LQc = MQ sin (0 + 3 H

A. Machine Equations in the Direct-Quadrature Components
The synchronous machine equations can be transformed into the (0-d-q)
components by using the modified Park's transformation [29].

The Park's transformation consists of thé set of equations:

iqu == ;abc

YOdq Q 1 Tabe

A

20dq & P Aabe
"1//7 1//7 Uz
where P A /g cos § cos (6-231'-) cos (8+ %71
sin 6 sin (6-%[) sin (6+ '2—3“-)
- o
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The following method is used to transform the machine equations in
the s-domain. Applying Park's transformation to the (a-b-c¢) partition,

equation (6.1) produces

| | ,..1[ .
0 1abc

| {
) ! |
| f ]
R IR R e e R e | R I EEE o | R (6.2)
! | |
\ ! |

U 1FDQ

The final result of the matrix multiplications in equation (6.2) is

'
I
AOdq LOdq i MFDQ iodq

—_——mem ] S e - —-—- [

t

' [
Arpo Mepq : Lenq | | *¥pa
]

or
o] [ © O : o o 0T[4,
)\d 0 Ld 0 :KMF KMD 0 1d
0 0 | 0 KM i
Aq a4 0 9 1q -
—l=l---———- = === -~ - -~ k=/5  (6.3)
|
l
AD 0 KM% 0 : MR LD 0 i,
0 0 i1 0 0 L i
A KMo i Q||
LO’ Ld’ and Lq are defined as
L0 = LS - ZMS H
L,=L +M + é L H
d s s 2 m
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L =L +M - 3 L H
q s s 2 m

The voltage equations:

From the equivalent circuit of a synchronous generator in Figure
6.2, the voltage equations in the (a~b-c) components are:
ve=-ri-\A (6.4)

and

A=Li+Li

L

Vq=0 . ) D

: | 1D. rD
VQ=0 i ) -C

Q ' A

Tq

Figure 6.2. Equivalent circuit of a synchronous generator

Equation (6.4) in a matrix form is

[ Vo | r-ra : 7 ria-1 —ia_
Vb Th E 0 iy ’Eb
\A r, E i, A

| Ve || | R
0 0 E I iD %D
. ° 1l L 0 o) (Yo [’
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or in a compact form as

M abec abc

S N P N (6.5)

abc

v 0

D0 Reog | | trpa| | *¥mg

Applying Park's transformation to the equations in (6.5), the final

results in the (0-d-q) components are

i .
odg| |Rabe | © Loaq| |*odq F |
S RO iy N § ) I gl ) (6.6)
VFDQ O ) Repg || irpg ArDQ 0
!
where F = ﬁ P_1 A
- == =0dq
0
=]-w_ A
o q
w Ad
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Substituting >\O’ }\d’ and Aq in the above equations, they become

0 -(ra io + L0 iO)

<
it

<
fl

—(ra1d+woLqiq+woKMQ Q+L i +KM.Fi +KMDJD)

<
i

q —(1:'a iq-wo Ld id-wo KM.F iF—wo KMDiD+Lq iq+KMQ iQ)
F rFiF+KMFid+LFiF+MRiD.
——(r :LD+KM01D+MR1 +L )

—(rQ iQ + KMQ iQ + LQ iQ)

<
i

o
I

o
]

The speed of the synchronous machine is assumed to be constant in the
first few cycles after fault inception. This assumption enables the
machine equations to be transformed to the s-domain. Applying Laplace

transform to the above equations with zero initial condition produces

Vo(s) —(ra + s LO) Io(s)

Vd(s) -[(ra + s Ld) Id(s) + wo Lq Iq(s) + s KMg IF(s)

+ s KM ID(s) +w, KM Q Q(s)]

Vq(s) =0, Ld Id(s) - (ra + s Lq) Iq(s) + Wy KMF IF(s)

+ w, KM.D ID(s) -5 KMQ IQ(S)

VF(S) =g KM'E‘ Id(s) + (rF + s LF) IF(S) + s M‘R ID(s)
0 = ~[s KMD Id(s) + 8 M.R IF(s) + (rD + s LD) ID(s)]
0 = -[s KMQ Iq(s) + (rQ + s LQ) IQ(S)]
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Preceding equations can be written in the matrix form

[V,(s)]
vd(S)

vq(S)

Vo (s)

VD(S)

VQ(S)_

or

where

(- (x_+s La) 0 0
0 ~(r +s Ld) -woLq
0 WLy -(r#sL )
0 sKM, 0
0 —sKMD 0
o 0 ey
—IO(S)
Id(S)
Iq(s)
IF(S)
ID(S)
I (s)
| Q7
Voaq (s 297 1 Z12{{ T0aq‘®
_____ = - am - .'. - - —— - —
Vepo (&) 271 : Zgo 1| Trpq(®)
-(1:a + s Lo) 0
Ell 0 —(ra + s Ld)
0 u)o Ld

|

: 0 0

: _'SKMF -SKMD

|

{ (DO'K mOK}.{D

-w_ L
°c q

—(ra + s Lq)

0

-UJOK MQ

6.7)

(6.8)
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" 0 0 0
Zyy = |-sKM -sK‘M.D -w, KM, (6.9)

woKME‘ u)oKM.D -SKMQ‘

[0 sk 0
Zy,7 =|0 —sKM 0 (6.10)
Lo 0 -sKM,
[(rp + s L) sMy 0 B
Zyy =| -sM ~(xy + s Lp) 0 ' (6.11)
0 0 ~(ry + 8 L

Flimination of rotor variables:

Since VF is constant (dc source), then the superimposed value of the
field voltage Vé'is zero and the rotor variables can be eliminated. The
superimposed voltages Va(s), Vé(s), and V&(s) can be obtained by applying

Kron reduction to the matrix partition.

v, Z., } 2

0dq ‘%) 11 1 212 || Toaq‘®
————— - ———-:-——— o - am e e (6-12)
0 Zo1 1 %22 || Tmqt®
Then,
» — "1 -~
Voaq(® = [Z17 = 213 Zpp Zpyl Iggq(®)

Z0aq® Ioaq ® (6.13)
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where:
-1

Z20dq(S) = 291 = 295 Zyy Z

B.

21

Transformations Between Different Sets of Components

As shown in the block diagram in Figure 6.3, the (0-d-q) components

are related to the (a-b-c) components.

Similarly, the (0-f-b) components

are related to the (0-d-q) components. The (0-f-b) components are found

to be very useful in the interconnection of the rotating part and

stationary part in the power systems.

Direct-phase _Afl Symmetrical
fescanmmee e
components 4 components
(a-b-c) (0-1-2)
-1 T P
g 1 -];2/” 3| T
- (] =t
Direct-quadrature 2 Forward-backward
components T components
(¢-d-q) =0 (0-£-b)

Figure 6.3.

Block diagram of different transformation matrices

The transformation between the (0-d-q) components and the (0-f-b) com-

ponents is defined as

1B i+ 4

d
A

jiq: "1f + ib

(when the q-axis lags the d-axis

as Figure 6.4).

Figure 6.4, Forward-backward
components
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=N
1

(6.14)

ib (id +_j iq)/2

By using the same transformation for voltages, the instantaneous power is

2 :|.d+vq 1q (vf+vb)(if+1b)+j(vf-vb)3(if-ib)
= Vg if+Vb ib+vb J‘.f+vf ib— (vf if+vb ib-vf ib)
i

= 2(v (6.15)

£ itV 1g)
In order to make the transformation power invariant (the instanta-
neous power in terms of both sets of components does not involve a factor
2) it is evident that the factor 1/2 in equation (6.15) should be dis-
tributed between the two sets of equations. Thus the transformation

matrix that transforms voltage or current from (d-q) axis to (£-b) com-

ponents is

0 £ b
01 0 0
T o=dfo Wz VT (6.16)
a0 vz -3VT

The inverse of the matrix Io is

0l1l 0 0
1 g0 /T -iNT

b Lo 1//2 iz
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where T'_1
-0

*
= [To]t s SO !o is a power invariant transformation matrix.
Another transformation matrix (5012) is defined in many references [23]

to transform the (a-b-¢) to the (0-1-2) components.

1 1 1
=1 2
5012 =4 1 a a (6.17)
1 a a2
. -

where h=1 for the Fortescue transformation
h= /; for the power transformation
and "a" is an operator which is equal to 1/120°

_ -1 _ t
when h = Jg , 5012 = [A&iz] or

1 1 1
-1 1 2
A =11 a a
-012 .['
3 2
1 a a

The modified Park's transformation matrix is also a power invariant

transformation matrix because

1/v/2 cos O sin 0O
2-1= §- 1/V2 cos (B ~ 120) sin (0 -~ 120) (6.18)

1/v/2 cos (6 + 120) sin (6 + 120)

= P (orthogonal matrix)

Since all the tranformation matrices are power invariant, then any

impedance matrix can be transformed from any component system to any
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other system. For example, if Zold represents the impedance matrix in
the old system and Znew represents the impedance matrix in the new

system, then

= T*t
g-new T A gold I (6.19)

where T can be any power-invariant~transformation matrix.

In order to synthesize the previous developments into a useful
process, it is necessary to find a matrix that transforms from the
(0-f-b) components to the (0-1-2) components. As in the block diagram
in Figuré 6.3; the relations between the (6-d-q) components and the
(0-f-b) components can be obtained by the transformation matrix 20.
Then, the relation between the (0-f-b) components and the (0-1-2) com-

ponent can be obtained by the following methods.

v =11y
-0fb =0 -0Odgq
_m=1
- Io P Yabe
= (T "l oo ) v
-0 - =0127 =012
= Iop Yo12
where
-1
Top =L Elp

or
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_ - - .
1 0 0 w2 17 1/V2
T, =|0 12 -3//2 /Z cos 0 cos (G—Q-T—r cos (6+-2—Tr) x
=2p 3 3 3
LO Wz 37 sin & sin (0 - —2311) sin (6 + -23ir-)
1 1 1l
/% 1. a2 a
1 a a2
0 2
0 r1 0
=f10 ';";e 0 (6.20)
blo 36
3 e -
where
g = mot + 8§+ 7w/2 s W = 377 rad/sec } (6.21)

The method of finding the angle § will be discussed in the next section.
. B R

IZp is aiso a power inyariant matrix because [sz] = [sz] . The

matrix in equation (6.20) is a very simple transformation matrix, since

it is equal to its own transpose and it has only diagonal elements.

C. Voltage Equations at the Sending-End Bus
From equation (6.20), the superimposed voltages in the (0-f-b)

components are

vf'= vy e-je
= vi' ar DR I (6.22)

and
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ju t j&” ,
v,” = vé’ e e (6.23)

where 8§ =6+ m/2

Equations (6.22) and (6.23) are in the time-domain. They can be trans-

formed into s-domain by means £(t) exb(jwot) < => F(s-—jwo), then

Vg(s) = Vi(s*-jwo) exp(-jé”)
(6.24)
V/(s) = Vi(s~-3uw) exp(§87)
Similarly,
I(s) = I;(s+3u,) exp(-j8”)
(6.25)
Ig(s) = I;(s-3ju ) exp(js”)

Since the zero sequence of voltage and current do not change from one set
of components to another, equations (6.24) and (6.25) can be written in a

matrix form as

vé(s) Fl 0 0 V6(S)

VE(S) =10 —gG 0 vi(sq.jwo)
- jé~ e
va(S)J _0 0 e | va(s on)J
or
Vorn(®) = Tp Ygp2(8™) (6.26)
and .
Ed%b(s) = It 5612(3') (6.27)

If godq(s) in equation (6.13) represents the impedance matrix in the

old system and Zofb(s) represents the impedance matrix in the new system,
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then similar to equation (6.19) Z

—Ofb(s) can be obtained as

*t

Zoep () = Lo Zpaq(® Lo (6.28)

*
Iot denotes the conjugate transpose of !o' Similarly,

*t

Z012¢®) = I Zogp(s) Iy (6.29)
By substituting gofb(s) in (6.28) into (6.29), the result is
_ ookt Rt
Zo12(8) = It Iy Zpaq(®) Ip I
_ * % t
= Ty I Zpgq(s) (I, T)
- m*t
where
T12=%, I
1 0 0 1 0 0
=10 1/V2 1/V/2 0 exp(-j67) 0
0 j/V/2 =j/V/2 0 0 exp(js8”)
V2 0 0
=Ll o0 exp(-36M exp(367) (6.31)
V2

0 j exp(=i6") -j exp(38”)

The above transformation matrices are used to find the superimposed
generator terminal voltages (vé) in the sequence components as follows.

As equation (6.13)



Yl
£0dq

where

Z
8012

V‘
go12
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(s) =2,, (s) 1~ (s)
0dq gOdq
V' (8) =2,,.(8) +T 1~ (s)
Botb 0dq ° By
T V' () =2 . ()T T +1° (s7)
t “By12 ~0dq o -t “Byyo
. -1 ) . -
(") =T * Zp4q(8) * Typ ¢ I (s7)
12 0dq 12 8012 :
*t '
= I . Z (S) . ! . -].:- - (S’)
12 0dq 12 g012
= g (S) e 1° (s’) (6.32)
8012 ~Bo12
- *t - ]
(s) =T33 " Z0aq(® * Iyz
Vi) ] 1) |
0 0
() = Vl(si-jwo) and Ig012(s ) = Il(sﬁ-jwo)
L_VZ(S - jwo)‘ _IZ(S - jwo)_

(s”) representing the shifted s-domain, (i.e.,) no shifting in zero

sequence, shifting the positive sequence by (jwo), and shifting the

negative sequence by (—jwo).

If v_represents the generator terminal voltage and Va1 represents

the sending end voltage, then the sending end voltage equation from the

generator side can be obtained.

As shown in Figure 6.3, the sending-end voltage in the shifted s-

domain can be written as
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——= 1 |———e—e
v 1) I_(s7) 4
Vg(S ) Vsl(s )

Equivalent circuit of the transformer

Figure 6.5.
in the shifted s-domain

Vi, (0 =Y (s7) -2z,(s7) * I2,(s7) (6.33)

-slgyp 8012

where Ztr is the impedance matrix of the transformer in the shifted

s-domain which is written as

Ztro(s) 0 0
Z,.(s) = 0 Z, (s 3w) 0
! 0 0 Ztrz(s-jwo)
o

Equations (6.32) and (6.33) are combined as

(sY) =12, (s),L; (s7)-2.(s7) [ I 12(s')
0

v)
012 €012 ~€012

-sl

but 17 (s7) = Iél (s’) , then

8012 012
FTRCERNCHIORS MCe STRCS
=2y, ;;1012(5‘) (6.34)
where Z , = Zg012(s) - 2.0
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Equation (6.34) is used to find the sending-end voltage from the
generator and the transformer side in sequence components and in shifted
s-domain. With the above method, the machine equations (having time
varying parameters) cah be combined with the transmission line equatioms

(having frequency varying parameters) in frequency domain.

Rotor angle of synchronous machine:

The main field-winding flux is along the direction of the direct
axis as shown in Figure 6.1l. This flux produceé an EMF that lags by 90°.
Therefore, the machine EMF (E) is primarily along the rotor q axis. In
steady-state analysis, the phasor E leads the general terminal voltage
;t‘ The angle between E and ;t is the machine torque angle §. At zero
time, the phasor ;t is located at the axis of phase a (reference axis)
as shown in Figure 6.6. The q axis is located at an angle §, and the d
axis is located at 6 = § + /2., At t > 0, the reference axis is iocated
at an angle wot with respect to the axis of phase a. The d axis of the
rotor is therefore located at 0 = Wt + § + m/2 where W, 1s the rated
(synchronous) angular frquency in rad./s and 6 is the synchronous torque
angle in electrical radians. The angle § can be obtained from the
steady-state condition. The boundary conditions are the terminal voltage

v _, the terminal current it’ and the angle ¢ between v, and it'

t’
From the phasor diagram in Figure 6.6

A - -
Eqa = v, + (ra + ] Xq) it (6.35)

where r, = stator resistance and it = gsending-end current Is.
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d axis q axis

reference

i B

Figure 6.6. Phasor diagram of the synchronous machine

The terminal machine voltage is

v = Vg + (rtr + j Xtr) is (6.36)

From (6.35) and (6.36)

B, = Gs + (r, + XD ES +(r, + 5 X) i
= GS + (Tege ¥ 3 Xpop) Zs (6.37
where
Teot = Ta ¥ Ter

Xeot = %q T *ex

Therefore § is the angle of Eqa'
By knowing the rotor angle 6, then the transformation matrix 212

in equation (6.31) can be obtained.
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VII. INTERCONNECTION OF SYNCHRONOUS MACHINES AND
TRANSMISSION LINES IN FAULTED POWER SYSTEMS
In order to make the line equations compatible with the machine
equations, the line equations must be formulated in sequence components

and in shifted s-domain (s~*).

A. Tormulation of the Transmission Line Equations
in the Shifted~Frequency Domain

Equations (4.3) and 4.4) are transformed into sequence components by

using the transformation matrix 5012 in equation (6.17).

d !
= ax Jo12(%:8) = Agyp Z2(s) Agy Lgpp(xs8)
= Zp12 Lop2(*»®) 7.1
Similarly,
d (7.2)

= ax Lo12®8) = Y19 Igpp (%)
where

o
Zo12 = fo12 Z¢8) Agpo

o
Yo12 = 8012 Y(8) Agyy

The second derivatives of equations (7.1) and (7.2) are

d2

2 Vo12(s8) = Zgy9 Yp15 Vgyp(%s8)

A Yg12(%>8)

and
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2

d -

—5 Lg12(*+8) = Y15 Zgyp s8)

dx

= 'At I...(x,8) (7.4)
A Ig1at%s .

where

A =2Zp15 Y012

ot

A = Y512 Zo12

The same method that was used in Chapter IV is used in this chapter to
solve equations (7.3) énd (7.4). }012(x,s) and YOlz(x,s) are written as
‘I and “V to simplify the notation. Equations (7.3) and (7.4) are
decoupled by using the modal transformation introduced in Chapter 1IV.

The following relations are obtained:

_Q_E AY’I" = (‘_S_-l ;- )-S-) ;Y'*' (7'5)
dx

Similarly,
3 T =0T A DT (7.6)
dx

where:

“8 is'the eigenvector matrix:of “A
“Q 1is the eigenvector matrix of ‘ét

+
“V  and ‘I+ are the modal voltages and currents in sequence components.

(’g_l ‘é ’§) and (’g-l ‘At ’9) are diagonal matrices wbere the diagonal

elements are the eigenvalues of “A or ‘At.
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Therefore,

;S"l aé '§ - IQ—]. ’At JQ - »11

Equations (7.1) and (7.2) can also be decoupled as

d ..+ -1 + ot

— V = .~ - -~ = _‘ i 7-7

ax L -8z, QTN =D, I Al

d Pl + _ » -1 - » + — - Pl +

dx I =-7Q 3012 SV =- Qy v (7.8)
Solutions of (7.5) and (7.6) are known as

’f' = “Cl exp(-“Tx) + “D1 exp( T x) (7.10)

“Al, “B1, “Cl, and "Dl are obtained from the boundary conditions as

specified in Chapter 1IV.

W UT D, T 4 )
BT D, T
=g T D, N )
L= L - T Dy v

Substituting “Al, “Bl, “Cl, and ‘D1 into equations (7.9) and (7.10)
produces the sending end equations

1+__; P - )+;+
Ysl = Deg Vet Dy Zp I (7.11)
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’+_‘ P )+—l, ,+

To1 = Doy Lt U200 De1 Yy (7.12)
where

‘D =

cl cosh ( Yi,i xl)

D, = sinh ( Yi,i xl)

i,i

/z+ = 41-,"‘1 )D

-0 - -z
+ .

Note that “T, “Z

T "2, ch, and 'Qsl are diagonal matrices.

The primes in the above equation are used to indicate that all the
parameters and variables are in sequence components (0-1-2). Equations
(7.11) and (7.12) are obtained in the shifted s-domain (s”) by the
following procedure:

* No shift in zero sequence components

* The positive sequence component is shifted by jwo

* The negative sequence component is shifted by -jwo
So, equations (7.11) and (7.12) become

P ot

1+ » _ - ‘+ » - -

‘—’sl(s ) = Des1 Yr(s ) + D1 Zos -I-rl(‘S ) (7.13)
’+ » =» - - » "1; » -

zsl(s ) chl E:l(s )+ ( ng) stl Y;(s ) (7.14)

The modal variables are transformed back to the phase variables as in

Chapter IV. Equations (7.13) and (7.14) become
“V .(s”) = ("S “D ‘s‘l) “V_(s*)
-sl - =cs8l - -r

+ (Igos ’g ,Essl ’9 ) ’Irl(s’) (7.15)
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;Isl(sf) = (»g ‘Qcél ;g"l) ’Irlcs;)

Zh v () (7.16)

The sending end voltage from the generator side was obtained in

Chapter VI, thus equations (6.35), (7.15), and (7.16) can be combined.

The result is

Then,

or

where:

and

("s D

- -l - » » -~ P - -1 - ” _
§ Degr 8 ) V(D) + (2,0 " Dy TQ) TIy(sT) =

-58

-, » - —1 - - - o ; -l ay=1 Sy s .
th[( Q chl Q) -lirlcs ) + (79 stl Q Zos) Yrks )]

Iy Np(s7) = =TTy Ly ()

I(s7) =-"T," ", “V_(s7) (7.17)
- I - "1 - - . - "1 - ""l

T1 =8 chl 5 zgt Q -ssl Q Zos

- - - » » ’l - » » - -l

IZ - ZOS g —-ssl g . égt 9 2081 g

The receiving-end equations in thé s-domain are

P - — P -, ;-l 2 -
Vg2(87) = ("8 D5 8 V(T

” - - - -1 - -
*+( Eos 9 2332 Q) lrzcs ) (7.18)
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zsZ(s’) = (9 ’QCSZ ’9-1) ’ErZ(S')

+0QD , 0T 2 Y (s7) O (7.19)

-882 = <08

The receiving-end voltage equation from the load side in the s”-

domain is

(s = ="Z, "I ,(sD (7.20)

—sZ =s

where ’Zzs BZ + s~ E£ and it is a (3x 3) diagonal matrix. Similarly,
equations (7.18), (7.19), and (7.20) can be combined and they become:
v . (’s) = (“S°D ’s‘l) ‘V(s)+(Z _“Q°D ’Q'l) I_,(s7)
s2 ~cs2 ~r —os -552 r2

-Zs[ Q- —csZ Q ) I (s )+ Q"D =-ss2 9 égi)’yr(s’)] (7.21)

Equation (7.21) is rewritten in a compact form as

:[-‘_3 Yr(s ) = - 24 Irz(s )
or
(s7) = “Loep vy (s (7.22)
-r2 4 =3 -r '
where
- _ . - "l - - - » _1 -~ "1
I3 S 9cs2 s+ Zﬁs Q -882 Q Eos
and
)T = ’Z ;Q ’D - "‘1 + »Z ’Q ’D Q""l
=4 ~os = =~=gs2 Q =25 = =-c¢cs2 =

The voltage equations at the fault location (Vr) are obtained for all

types of faults in Chapter V. In order to use these, they must be
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transformed into sequence components and s -domain in the same manner as
the other equations derived in this chapter. To clarify the above
procedure, a three-phase fault is taken as an example. As discussed in

Chapter V, the voltage at the fault location in s-domain is given by
V.(s) =2, I.(s) + V.(s)

Applying the transformations
v (s) = AL, V_(s)
-r -012 -r

Lp1(8) = Bopp Ly (e

Lr2(8) = 4g15 I;p(e)

Ze = 2012 %5 4012
to the preceding equation produces

V. (s) = “Z; “I.(s) + “V(s) (7.23)

In equation (7.23), the positive sequence is shifted by jwo and the
negative sequence is shifted by —jwo. Then equation (7.23) can be
written as

V(s =z

£s Lp(87) + Lg(sT)

and

zf(s ) = Irl(s ) + Irz(s )

If the prefault voltage is assumed as a cosine function, then prefault

voltage at the fault location is
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Ve = Vy cos(wot + ¢ + ai) , 1=0,120,240 (7.24)

Equation (7.24) is transformed in the (0-1-2) components, and the result

is written in a matrix form as

Vo 1 1 1 cos(wot + ¢ + 0)
1 2
Vfl = 3- VM 1 a a cOS(wt) + ¢) - 120) (7'25)
Veo 1 a2 a cos(wt + ¢ + 120)
L. = - -l B

But,

cos(wot + ¢.+ oci) =%— [exp(jwot) exp j(¢p+ O‘i),
+ exp(-jwot) exp —j(¢+—ui)] (7.26)

Equations (7.25) and (7.26) are combined and the result is

= (7.27)
vfO 0
v, jw. t -jw_ t
= .M o° _i¢ o- ~i¢
Vel TG [ (e e’ + e e ")
, jo t .. . -ju t . .
+ e3120 (e (s} eJ¢ e 3120 te 9 @ o eJlZO)

. Ju t -lw t L .
+ 1240 (e ° ed0 120 4 o TTOT TI0 J120)]

Jut
- l’ihz [ 0 It (7.28)

Similarly,

TR A P (7.29)
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Equations (7.27), (7.28), and (7.29) are written in a matrix form as

vfo 0
7 -jw_t M) »
M
Ver | T2 | © ° ° ‘ (7.30)
=-jw t
sz e o ejd)
a - . .

By taking Laplace transform of equation (7.30), then the result is

Vfo(s) y 0
Ve(s) = [V () [ = 3 | 1/(s-dug)  e? (7.31)
Vp() | 1/(s+ 3u) e‘J¢J

In order to find equation (7.31) in the s”-domain, the positive sequence
is shifted by jwo and the negative sequence is shifted by -jwo. Thus

equation (7.31) in the shifted s-domain (s”) is

0
V.
- -~ .. .M R )
Yf(s =55 © (7.32)
R [

Once 'Vf(s’) is obtained, then the voltage at the fault location can be

obtained from equation (7.23) as follows

V(57 = 2 [FI (87 + “L,(s7)] + V() (7.33)

Equations (7.17) and (7.22) can be used to eliminate ';rl(s') and

lrz(s ) to produce
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»"'l’

V() = "Zggl-"Ty Ip - LTIyl V(7)o Vel

’v (Sl) = [U + ;Z (»T—l ‘T + ‘T-l,T )] ;V (S )

Ye U+ 2g 0L, I+ I, 7190 U,

= [g + g.fs .']_:] Yr‘(s )

or

- - - - - "1 - »

v (s = [0+ 2, 117 Y (s7) (7.34)
where

’_’-1 ;-1
I= !2 421"'?.4 T._3

after ’Vr(s’) is obtained, then 'Irl(s’) and 'Irz(s') are obtained from
equations (7.17) and (7.22). Consequently, the sending-end voltages and
currents can be obtained from equations (7.15) and (7.16) in the s”-
domain. The above equations give the transient solution of the voltages
and currents in the (0-1-2) components.

The total solution for voltages and currents can be obtained by the

following steps:

« The shifting in the frequency domain must be changed back. The
positive sequence component is shifted by -jwo and the negative
sequence component is shifted by jwo for both voltage and current
components.

« The voltages and currents at the fault location and at the
sending-end are transformed from (0-1-2) components to (a-b-c)
components by using the transformation matrix 5012.

+ The above voltages and currents are transformed into time domain

by using the fast-Fourier transform (FFT).
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Therefore, the total solution for voltages and currents can be obtained
by adding the steady~state solution to the transient solution at the

point of interest.

B. Fault Transient Waveforms for Three-Phase Fault
The method of finding time variation of voltages or currents of
interest is described in Chapter VIII. The example in Appendix A
is used to test the proposed solution. The computer program in Appendix
B is modified that can handle the system equations with the full machine
model. The waveforms of the three-phase sending~end voltages and

currents are obtained for three-phase fault at the middle of'thé line.

These waveforms are shown in Figures (7.la) and (7.1b).
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Figure 7.la. Sending-end voltage for three-phase fault
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Sending-end current for three-phase fault




116

VIII. METHOD OF COMPUTATION

Appendix B consists of the FORTRAN program used to obtain numerical
solutions of the faulted power system equations. In this ﬁrogram, well-
established library subroutines have been utilized. These subroutines,
called LEQTIC and EIGCC, are said to be "zero-error" programs. The first
inverts any nxn complex matrix and the latter computes the eigenvalues
and the real eigenvectors matrix of a complex nx n matrix. Such sub-
routines have an error indication (IER) which will terminate the program
if a singularity is indicated in the LEQT1C subroutine or if the EIGCC
subroutine fails to find the eigenvectors of the matrix. A well-known
fast Fourier transform subroutine (FFT) is also used which is based on

decimation in time techniques [30].

Transform method of solution:
Time domain solutions are obtained from frequency domain equations

by the inverse Laplace transform integral

a+jo

f(t) = 5%3 g F(s) exp(st) ds (8.1)

Since the system is stable, all poles are located in the left half
plane in the complex frequency domain. Also, since the solution includes
a 60 Hz component, there will be at least one complex conjugate pair
along the imaginary axis. Therefore, the path of integration has to be
displaced from the imaginary axis by a so-called convergence factor (a).
The inversé Laplace transform [31] has precisely the desired effect

of shifting the line of integration. This may be seen by making the
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substitution
s = a+ jw - ' (8.2)

in the inverse Laplace transform of equation (8.1) which then becomes

£(t) = o= j‘ F(a + ju) exp(at) exp(jut) dw (8.3)

where t > 0
and £(t) = 0 for t < 0.

The integral in equation (8.3) cannot be evaluated analytically and
it is necessary to evaluate it by numerical methods. In order to carry
out the numerical integration, it is necessary to truncate the finite
range of the integral to some finite value, say (-2, 2). This introduces
a truncation error which, being multiplied by exp(at), increases rapidly
with (at). This sets an upper bound to the choice of (a). The best
value to use is discussed later.

To examine the nature of the truncation error, the value of f(t)

with the integration range truncated is given as

£(t) = E’fl(-a—t—j' F(a + jw) exp(jut) dw

or

f(t) = EERL&E— f F(a + jw) ¢ (jw) exp(jwt) dw

where

1, | <@

¢(Jw) =
0 , |w >8
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The complete Fourier transform of ¢(jw) is given in reference [32] as

9 |
B(E) = 2 j‘ﬂ exp(jut) dw = 5‘—1—11%%——‘"‘1 (8.4)

One interpretation of this truncation is that the function £(t) is
scanned by the passage of the Dirichlet Kernel sin(Qt/mt over it [33].
The periodic nature of this function gives rise to Gibb's oscillations
[34].

Since the period of oscillations of ¢(t) is 27/Q, as shown in
Figure 8.1, a better representation of f(t), say fg(t), is achieved by
averaging over this period in the following way.

t+r /9

Q
f (t) = [—— f(T) dT] (8.5)
o] 27 ft—'ﬁ'/ﬂ
Q Q t+m/Q
= exp(at) 3 f F(a+ jw) dw f " exp(jwr) dt (8.6)
2m*° -9 t=T/Q

Evaluation of the inner integral (as in reference [34]) gives

Q
£ (t) = E’—‘lz’#;“l [ Fla+tiw) o (@) exp(jor) du (8.7)
Q
where
_ sin(mw/Q) (8.8)

o(w) = =/

The function o(w) is called the sigma factor [32-34]. Since the func-

tion fc(t) is a real function, it implies that:
* [
F(a + jw) = F (a - jw) (8.9)

Therefore
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i
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Figure 8.1. The Dirichlet Kernel 0
' _ exp(at) i
fO(t) == Real { f F(a+ jw) 0 (w) exp(jwt) dw } (8.10)
o

The sigma factor:

The sigma factor, as explained above, is a mathematical device which
is often used in conjunction with the numerical inversion of the Laplace
(or Fourier) transform. Its purpose is to suppress the Gibb's oscilla-
tions, which sometimes appear iﬁ“the computed time function.

To illustrate the problem involved, consider the Laplace transform
of a unit step function. The Fourier integral for the step function

-n/2 for t < 0, /2 for t > 0, may be represented by the integral

©0
I sin&wt) dw [32]
o

On truncating the range of integration (say ) the sine integral is

obtained, i.e.,

Q
[-EIRLE gy = sicar) (8.11)
o w

where ) = NeAw and Aw is chosen as 7.5 w
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This function is shown in Figure 8.2. with and without the sigma factor.
In curve 2, the GiBh's oscillations are apparent and sustained. On
introducing the sigma factor and carrying out the integration process
numerically, curve 1 in Figure 8.2 was obtained. Clearly the Gibb's

oscillations are virtually eliminated by the use of the sigma factor.

Numerical intégration:
The numerical evaluation of the integral of equation (8.10) is
based on discrete samples of F(a+ jw) taken at points lying along the
. CAwo L 3Aw
path of integration. Let these samples be taken at a i35
etc. as indicated in Figure 8.3. Application of the midpoint rule of

numerical integration then gives the following expression for the value

of fo(t) at a selected time instant tk

N . I}
£ (g) = SXR@Y) por 3 R+ 2L Ay o (2L A
o'k T =1 2 2
exp[ (3 ?‘i'z'liAw) At k]} Aw (8.12)
where
8 =N Aw

_ [-(21"1>Aw:| _sin ((23-1) v/N)

(21;1 )W/N

Proceeding with equation (8.12)
—jé%%-At‘k
N ] . . e
£ (r) = XR@) g1 dl $ F, () oI (TAwALTK) (8.13)
ok m 1=1 i
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Figure 8.2.

Effect of sigma factor
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Figure 8.3. Frequency domain

and

. 2i-1 2i-1
Fi(m) = Fla+j ; Aw) o (—fi— m») Aw

Since N discrete samples in the frequency domain result in N discrete

values in the time domain,

2T 27

At = Q ~ AweN

and equation (8.13) becomes
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at N
fo(tk) = e_“___ Real z Fi(w) exp (_j_Z;\rI_ik) ] exp (—j-A%At k) (8.14)
i=1 :

eat A |
- Real 4 F(k) exp (_i_ At k) (8.15)

where F(k) is obtained by FFT algorithm [31].

The special form of equations (8.14) and (8.15) allows the use of
FFT algorithm which is well-known to be computationally efficient.
This is beéause the FFT algorithm requires only N logzN units of’
computation [31] compared with N2 units in the case of the direct method.
Computational requirements are thus reduced by a factor of approximately
N/logzN, e.g., 102.4 for N = 1024, In short, a very substantial

reduction is obtained.

Numerical integration parameters:

As indicated in the last section, it is necessary to assign values
to the convergence factor (a), the step size (Aw) and the range ().
These parameters are not only interrelated in a complex way but their

choice depends on the time over which the solution is required.

Choice of (:

If Q is chosen too small, it may limit the rate of rise and some
high frequency components may not appear in the solution. This is
illustrated in Figure 8.4 by applying the technique to a unit step
function with two different values of Q. It is clear that using a
higher value of Q results in elimination in the rise time. The value

used based on the mathematical experimentation is:



124

Q=N Ay = 24,127.43 rad/sec. for M=10, Aw=7.5m.

However, the above value of ) was increased by a factor of 2, 4, and 8
and it did not give any significant change in the final results.
Therefore, the choice of @ could be the above value multiplied by Zi,
and i=0,1,2,... etc., depending on the case under study to include the

highest frequency that may be in the solution.

Choice of (Aw)

The step size should not be too large or too small for an accurate

solution. The following choices have shown (Figure 8.5) to be accurate

A =7.5mTmor 15w

Choice of (a)

The parameter (a) plays an important role in numerical integration.
As previously mentioned, truncation in the frequency domain introduces
errors. Such errors may increase rapidly if (a) is not precisely chosen.
To find the best value, different numerical values were assigned to (a).
The vaiue that gave the best results was equal to the step size (Aw).
An illustration of such choice is shown in Figure 8.6 for two values
of (a).

Finally, the following parameters were tested on sinusoidal and

cosinusoidal waveforms (Figures 8.7 and 8.8):

My =7.57
a=Aw
10
Q= 2x7.57=24,127.43 rad/sec,
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In summary, as a result of extensive mathematical experimentation,
the parameters that have been chosen gave eminently satisfactory results
for the severe cases that were tested. The cosinusoidal, sinusoidal,
and unit step function have poles on the imaginary axis. However, the
solution is accurate and stable, This validates the technique for any
other functions that have their poles on the imaginary axis or in the
left half plane. As a conclusion, the technique implemented in this
work is numerically stable and accurate. TFurthermore, the inversion
process includes a FFT program which has been proven to be computation-

ally efficient.
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IX. COMPARISONS AND CONCLUSIONS

In almost any simulation study, there comes a point where mathemati-
cal expediency prevails over physical reality. In the specific case of
transmission line transient simulations, previous investigators have
found it expedient to ignore assymetric magnetic coupling between the
lines (untransposed lines), and/or frequency variation of line param-
eters. Expediency is also dictated to some degree by mathemétical
strategy; when frequency dependent line parameters are included, it is
necessary to use frequency domain analysis. In such caées, expediency
has made it convenient to represent the generator by a Thevenin equivalent
with constant inductance. This thesis has developed a simulation method
that transcends these particular limitations. One of the important con-
sequences of this work is that it makes it possible to do comparative
studies that show the consequences of including or neglecting a particular
factor. Subsequent sections in this chapter compare the consequences of:

+ assuming that the lines are ideally transposed

neglecting the variation of line parameters witH frequency
» modeling the generator as a Thevenin equivalent

« neglecting the fault impedance

. neglecting the skin effect

- assuming lossless line.

Effect of transposition:
The magnitudes of the fault-induced voltages depend on the values of

of the mutual terms of the line surge impedance matrix, and this in turn
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depends on the spacings and configuration of the conductors of the line.
Equal spacing or equal mutual couplings between the conductors is equiva-
lent to assuming transposition of the three phases of the line. With the
line untransposed, the mutual terms of the surge impedance matrix will ~
not, of course, all be equal. As a result, the voltage induced in a
particular phase will depend on its position on the tower relative to the
phase or phases energized. The effect of transposition on the sending-
end voltage waveforms can be shown in Figure 9.1 and 9.2 for a single
line and double line to ground faults at the middle of the line. The
occurrence of such faults gives an increase in the peak value of voltage
(25% ~ 35%) on the unfaulted phase or phases. This increase in voltage
cannot bé shown in case of transposed line due to the assumption of equal
coupling between phases. The effect of transposition in the faulted
phase can also be shown in Figure 9.3. This figure shows the frequency
spectra of the transient sending—end voltage for single line to ground
fault at the middle of the line. The effect of transposition in the case
of three-phase fault at the middle of the line can also be shown in
Figure 9.4,

These comparisons show that the unequal mutual coupling (untrans-
posed line) could be very important in certain studies such aé the design
and insulation coordination of power apparatus and systems to avoid

underestimation of overvoltages.

Effect of generator model:
Comparisons are made between the simple machine model and the full

machine model for three-phase fault at different locations. The
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waveforms df voltage and current show that the difference between these
two models is insignificant when the fault was located at the receiving-
end of the line (load side). Figures 9.5a and 9.5b show the difference
in the sending~end voltage and current waveforms of phase a due to
three-phase fault at the middle of the line. The difference in the peak
values of the sending-end voltage varies between 10% to 25%. This
difference increases to 30% to 407 when the fault was located at the
sending-end as showﬁ in Figure 9.6a and 9.6b. The effect of the machine
model on the frequency spectra of the transient sending-end voltage for
three-phase fault at the middle of the line is also shown in Figure 9.7.
These results indicate that the high frequency component, in case of
full machine model, has a higher iﬁitial value and a higher rate of decay
compared to those obtained using the simple machine model. Moreover, the
frequency of the traveling wave is more than 10% lower (Figure 9.7).
Such information is needed for setting traveling wave relays and a more
than 10%Z error in this frequency will cause more than 10% overreach in
the traveling wave relays operation. Therefore, it is necessary to
represent the generator by its full model, particularly when the fault
close to the source produces realistic current and voltage waveforms and

to assure the realiability of a system for a given application.

Effect of fault impedance:

Most fault transient programs assume solid connection between the
fault and the earth. This assumpfion may introduce an error due to the
fact that at the fault location there is a resistance (arc resistance

and line resistance) and an inductance (line inductance). Figure 9.8



134

shows the difference between the sending-end voltage waveforms due to
three-phase fault at the middle of the line with zero fault impedance
and with a fault impedance (Rf = 10 ohm, L% = ,1 mH). It is clear that
the traveling wave components become progressively more damped when the
fault impedance is included (due to the fault resistance). The fault
impedance nét only affects the magnitude of voltage but also affects the
frequency of the traveling wave as shown in Figure 9.9,

These results indicate that the assumption of zero fault impedance
overestimates the magnitude of voltage and underestimates the magnitude
of current. At the same time, the frequency of the traveling wave is
about 107 loﬁer. Such information is needed for accurate design of

insulation, circuit breakers, and relays.

Effect of line resistance:

Many utilities still use the lossless line model for transient
studies. Figures 9,.,10a and 9.10b contrast the case where losses are
neglected with the case where they are included for three-phase fault.
These comparisons show that in case of lossy line model, the high
frequency components are highly attenuated due to the damping effect of
the line resistance. Therefore, the difference between the two wave-
forms (Figure 9.10a) started with 107 to 40% in the first half cycle and
then increased to 807 to 957 in the second half cycle. The lossless
line model gives incorrect results in the transient solution as shown in
Figure 9.11.

Based on these results, the lossless line model greatly overesti-

mates the voltage and it cannot be used in insulation design for
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economic reasons. It also might introduce misleading results in voltages

and currents with consequent effects on system reliability.

Effect of frequency variation of line parameters:

Most methods that use time-domain solutions are based on the
assumption of frequency independent line parameters. Figure 9.12 shows
the waveforms of the sending-end voltage of phase a in cases of frequency-
dependent and independent line parameters. The variation of these
parameters with frequency increases the damping effect on the high
frequency components. Therefore, neglecting such variation would under-
estimate the rate of decay of the high frequency components. Consequently,
this assumption leads to higher insulation levels due to the overestima-

tion of the high frequency components of voltage.

Skin effect:

The results showed that the skin effect is insignificant in transient
analysis as shown in figure 9.13. However, the skin effect may be con-
sidered for larger line conductors.

Other results and waveforms were obtained for different studies such
as: effect of fault location, effect of load, effect of generator size,

and effect of type of fault.

Effect of fault location:

Figures 9.14a and 9.14b show the effect of fault location on tran-
sient waveforms for three-phase faults at 100 miles and 50 miles from the
sending-end bus. The magnitude of voltage decreases and the magnitude

of current increases as the distance between the fault location and the
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sending-end bus is decreased. Table 1 shows the effect of fault
location on the magnitude of sending-end voltage (phase a) at the
dominant frequency for three-phase fault at different locations.

Taken together, Figures 9.14 and Table 1 show a trend in the
relationships between the distance from the generator to the fault, and
the amplitudes of the high frequency components in the voltage and
current waveforms. In order to interpret this, it is necessary to
recall that the resistance per unit length increases rapidly with
frequency (see Figure 3.3) and to note that the nearer the fault, the
higher the dominant frequency is. The net result is that even though the'
distance is halved (100 miles to 50 miles) the dominant frequency

component is attenuated by a factor of about 4,

Table 1. Effect of fault location

Fault location Magnitude of Dominant Magnitude of
measured from sending-end voltage frequency sending~end voltage
the sending-end at 60 Hz at dominant frequency
150 miles 1.23  pu 450 Hz .2117 pu
100 miles 1.07 pu 630 Hz .1909 pu
50 miles .7887 pu 1080 Hz .0471 pu
25 miles .5547 pu 1605 Hz .02648 pu

Effect of load:
Figures 9.15a and 9.15b contrast the case where the system was under

heavy load and the case where the system was under light load for
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three-phase fault. These figures show that the pattern of voltage and
current waveforms were not significantly affected by load condition, but

the magnitudes were different.

Effect of generator size:

As a larger generator has a smaller inductance, using the simple
machine model concept, the reflection coefficient of the incident wave
will be higher. Consequently, when a 615 MVA generator was used, the
high frequency components of the current waveform were higher than the
corresponding waveform for a 160 MVA generator. The traveling wave
components of current propagated into the source do not cause significant
voltage drop if the source impedance is small (for large generator size).
These results are depicted in Figure 9.l6a and 9.16b.

The same argument applies when a full generator model was used, but
the difference between the waveforms was greater. In general, the
larger generator has smaller values of the inductance matrix. This in
turn affects the magnitudes of dominant frequency as well as the rate of

decay. The results obtained by using the full machine model are shown in

Figures 9.17a and 9.17b.

Effect of type of fault:

The results show that the high frequency components of voltage and
current vary according to the type of fault. Some of these results are
shown in Table 2. The waveforms shown in Figure 9.18 were used to compare
line to line fault with double line to ground fault on phases b and c

at the middle of the line. The waveform due to double line to ground
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fault has higher high frequency components than the waveform due to line
to line fault. In general, any fault to ground involves two modes: the

earth mode and the faulted phase mode.

Table 2. Comparison between 3LG fault and sLG fault at the middle of

the line
Type of fault Dominant frequency S.E. voltage of phase a
at this frequency
Three-phase fault (3LG) 630 Hz .1909 pu

Single line to ground fault
on phase a (sLG) 645 Hz .08173 pu
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XII. APPENDIX A: NUMERICAL EXAMPLE

A fault study of the general transmission system on the digital
computer has been carried out using both the simple and the full model
of the synchronous generator. The system parameters have been sarefully
selected to be of most practical value. The one-line diagram of the
system to be studied is given in Figure 12.1. The system data are taken

from references [27], [29], and [35].
S.E. R.E.

I transmission line 'l

generator s2 sl

transformer load

Figure 12.1. An illustrative transmission system

Transmission Line:

In this example, a three-phase transmission line with flat configura-
tion and a ground wire is used as shown in Figure 12.2. The distances
between conductors are shown in that figure in ft.

Conductors are AL, ACSR 26/7, KCmi/Al 636

Line length = 200 milss

Voltage = 220 KV

Conductor diameter = .99" = .0825 ft.

Conductor resistance at 50%°c = .1618 ohm

GMR = .0335 ft.
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Ground wire: steel, diameter = .00l ft., resistance = 4 ohm/mi.,

and GMR = .001 ft.

GROUND WIRES

10

a@ b@ c@
I‘—2°'_"|*'— 20""' 55"

Figure 12.2. Transmission line configuration

Synchronous generator:

The following data are from reference [29] which is based on a 15 KV,
160 MVA system

Rated MVA = 160 MVA , .85 p.f.

Rated KV = 15 KV

r. = .000742 pu T&‘ = ,023 sec
X = 1.651 pu Té =',98 sec
x&‘= .185 pu Té; = .033 sec
xé = ,245 pu Téo = 5.9 sec
Xq = 1.7 pu T&‘ = .023 sec
xa‘= .1857pu Té = .51 sec
xg = »38 pu T~ = ,076 sec

q qo0
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xq = 1.6% pu T&o = .54 sec

r = .0011 pu ' rQ = .054 pu

%y = % = % = .15 pu | x, = 1.526 pu

r, = .016 pu r, = .0131 pu

Xy = .115 pu x, = 1.605 pu

X, = .1 pu
X,p = K M) = KM, =M =17 - 1.5 = 1.55 pu
XAQ = K MQ = 1.64 = .15 = 1.49 pu

If Z represents the new impedance in the new set of data and

new
Zold represents the old impedance in the old set of data, in order to

adapt the foregoing data to a 15 KV, 200 MVA system, the generator
parameters must be changed in the following way:

KV 2 mvA
7 u=2 old new
new P old pu RV

new

MVAold
Z for the generator side = Sléli = 1,125 ohm
base e 8 = 200 :
_ _1.125 _ -3
L ase for the generator side = zbase/ub =337 = 2.9841x 10 - H.

6.34612x 1073 1.

x, = 1,7 (200/160) = 2.125 pu

6.1174% 10~ H.

]

1.64 (200/160) = 2.05 pu

b
it

r = .,0011x1.25 = .001375 pu = .001547 ohm

Xy = KMy = KM, = M = 1.55x (200/160) = 1.9375 pu = 5.7817 x 10™° H.
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3

xAQ = KMQ = 1.49 x (200/160) = 1.8625 pu = 5.5579x10"~° H.
x, = .1x (200/160) = .125 pu = .373x 107> H.

v, = .000742 x (200/160) = .0009275 pu = 1.0434x 107> ohm
x; = 1.651 x (200/160) = 2.06375 pu = 6.15844x 107> H.

L = 1.605 x (200/160) = 2.00625 pu = 5.98685x 10™> H.

1.9075 pu = 5.6922x 10> H.

L, = 1.526 x (200/160)

r, = 0131 x (200/160) = ,016375 pu = .018422 ohm
rQ = ,054 x (200/160) = ,0675 pu = ,07594 ohm
Transformer:

Three-phase
15/220 RV
200 MvA

X =X, =X T .1 pu

]
i
al
U
]
]
o
o
[t
(5
I
e

Load:
Load power = 160 MW, unity power factor

Load bus voltage = 200 KV

Fault impedance:

10 ohm

]

Te

Lf = .1 m.H.
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System base:

Base KV = 220 KV

Base MVA = 200 MVA

Base synchronous speed = 377 rad/s;

Base impedance = (KV)2/MVA = (220)2/200 = 242 ohm

3
_ 220x10°

V3x Zbase V3x 242

KVLx 10

Base current = = 524,86 Amp.

For studying the effect of the generator size, another set of generator
data was used. This set of data for a larger generator size is based on
15 KV and 615 MVA as in reference [29].

Generator rating = 615 MVA and 15 KV

p.f. = .975

x&' = ,23 pu

xé = .2993 pu B
Xy = .83979 pu 30 = .12 pu
x;' = ,2847 pu Xp = .74 pu |
x& = .646 pu Téo = 7.4 sec
xq = ,646 pu rQ = ,1 pu
r, = .001 pu XQ = ,545 pu
x = .2396 pu ry, = .072 pu
r, = .004 pu X, = .698 pu
X, = .298 pu rp = .1 pu
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~
]

KM.D = KMF = M.R = ,8979 - .2396 = .6583 pu

P
I

AQ = KMQ = .646 - .2396 = .4064 pu
By transforming the above data to be based on 15 KV and 200 MVA as

.8979 x (200/615) = .292 pu = .87145x 107> H.

X4 =
X, = .646 x (200/615) = .21 pu = .627x107° H.
r = .001 x (200/615) = .00033 pu = .00037 ohm

3 .

xg = .12 x (200/615) = .039 pu = .11638x 10~

xyp = KM = KM, = M. = .6583 x (200/615) = .214 pu = .6386x 107> H.
xyq = KMg = -4064 x (200/615) = .1322 pu = .3945x107°  H.

rQ = .1 x (200/615) = .0325 pu = .03656 ohm

xq = 545 x (200/615) = .1772 pu = .5288x 107> H.

r, = .072 x (200/615) = .0234 pu = .02633 ohm

x, = .698 x (200/615) = .227 pu = 6774% 107 H.

ry = .1 x (200/615) = .03252 pu = .0366 ohn

.74 x (200/615) = .24065 pu = .71812x 10™° H.

"
[
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FAULT TRANSIENT PROGRAM
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L2222 2222222222 222222222 22222222 22222222222 22 25

* *
* FAULT TRANSIENT PROGRAM FOR UNTRANSPOSED TRANSMISSIGN LINE *
* *

L ER S22 2L 222222222 2222222222222 222222 2223322222222 22 0

THIS PRCGRAM IS5 DESIGNED FOR COMPUTING FAULT TRANSIENT VOLTAGES AND
CURRENTS AND IT!S WAVEFORMS AT THE FAULT LOCATION AND AT THE SENDe.
END OF THE TRANSMISSION LINE BY USING THE CLASSICAL MODEL OF THE
GENERATOR FOR ALL TYPES OF FAULT.

TYPES COF FAULTS :

TYPE 1. LLL THREE PHASE FAULT.

TYPE 2« LL LINE-TO-LINE FAULT UN PHASES B AND Ce.

TYPE 3« LLG DOUBLE-LINE-TO-GROUND FAULT ON PHASES B AND C.

TYPE 4+ LGF SINGLE-LINE-TO-GROUND FAULT ON PHASE Ae.

THE FOLLOWING ARE THE INPUT DATA TO BE READ IN

I 222 22222222 LS S 22222 S22 222222222222 2222223 22223 % 2

%
% READ(5+92MsNysNI+NCASEJNFT

%* READ(S5:510)RF (XLF,DW,DAA DWW

* READ(35210)DABysDAC,D3CsDS.DWS,RA

* READ(Ss10)HAAsHABHAC s HWW sHAW HBW

* READ(S,1CQ)DW+sDAWSDBA+DCH e XL 4 X1

¥ READ(S5+10C)RD+GTXSsGTXMyRDP,RWs ZBASE
* READ(S+10){(VS2([)sI=1+3)

* READ(S5,10){(CS2(1),1=1,3}

* 9 FORMATISI0)

* 10 FORMAT(6E13.6)

*

%

L I RN B R BE B BE B R K

S22 2322222222222 23222322232 £33 23222 3 3 3

GLT
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NOTATION USED [N THE PROGRAM
¥ kkkkxbhkkkkkkkrkkkkkkkkk®k

NCASE=NUMBER OF CASES T0O BE STUDIED

NFT=TYPE OF FAULT NUMBER

REF=FAULT RESISTANCE IN PU.

XLF=FAULT INDUCTANCE IN H./8ASE IMPEDANCE

DAA=QUTER DIAMETER OF THE CONDUCTOR IN FTe.

DWW=0DUTER DIAMETER OF THE GROUND WIRE IN FTe.

DABsDACLEDBC ARE THE DISTANCES BETWEEN CONDUCTYORS IN FT.

DSEDWS ARE THE SELF GeMeD. CF THE CONDUCTCR AND THE GROUND WIRE.
RA=RESISTANCE OF THE CONDUCTOR IN OHM PER MILE.

HAAs HABo HAC o HWW s HAWEHBW ARE THE DISTANCES BETWEEN THE CONDUCTORS
A+»B8:CEW AND THEIR IMAGE.

RW=RESISTANCE OF THE GROUND WIRE IN OHM PER MILE.

DAW,DBWEDCW ARE THE DISTANCES BETWEEN THE GROUND WIRE AND THE
CONDUCTORS A+88C IN FTa

XUL=TRANSMISSION LINE LENGTH IN MILE.

X1=DISTANCE BETWEEN THE FAULT LOCATION AND THE SENDING END BUS.
RO=AVERAGE RESISTIVITY OF THE EARTH.

GTXS=SELF IMPEDANCE OF THE GENERATOR AND THE TRANSFORMER IN PUe.
GTXM=MUTUAL IMPEDANCE OF THE GENERATCR AND THE TRANSFORMER IN PU.
ZBASE=BASE IMPEDANCE

ZBG=EASE IMPEDANCE IN THE GENERATOR SIDEe.

THE SUBROUTINES USED IN THE MAIN PROGRAM
KR EEREKERKEREKERR R KR RERR R KRR Tk R khkkkk

1¢ SUBROUTINE {(LEQTIC) TO FIND THE INVERSE OF A COMPLEX MATRIX.

2e¢ SUBROUTINE (EIGCC) TO FIND THE EIGENVALUES AND THE EIGENVECTORS
OF A COMPLEX MATRIX.

3« SUBROUTINE (ABCD) TGO FIND THE CONSTANTS A+3.C&6D OF THE TRANSM.
LINE EIN STEADY STATE CCUNDITION, .

4 SUBROUTINE (VRIR) TG FIND THE VOLTAGES AND THE CJRRENTS AT ANY
POSITICN OF THE TRANSMISSICN LINE IN STEADY STATE CUNDITION.

9T
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Se SUBROUTINE (VFT) TO FIND THE PREFAULY VOLTAGE IN FREQe DOMAIN.
6e¢ SUBROUTINE (LLLF) TO FIND THE VOLTAGE AT THE FAULT 20SITION FCR
THREE PHASE FAULT,

7« SUBRQUTINE (LLF) T0O FIND THE VOLTAGE AT THE FAULT POSITION FOR
LINE TO LINE FAULT.

8¢ SUBROUTINE (LLGF) TO FIND THE VOLTAGE AT THE FAULT POSITION FOR
ODUBLE LINE TO GROUND FAULT.

9¢ SUBRCOUTINE (LGF) TO FIND THE VOLTAGE AT THE FAULT POSITION FOR
SINGLE LINE TO GROUND FAULT.

10, SUBROUTINE (AIFFT)Y TO FIND THE VOLTAGES AND THE CURRENTS IN THE
TIME DOMAIN BY USING THE INVERSE OF THE FAST FOURIER TRANSFORM.

THE MAIN PROGRAM
*¥kkkkkhkkkkkkkkk

COMPLEX Z(494)+ZABC(3+3)+sYABC(393)+A(3+3)5S(3+3)+QI(3e33»
XGAMAI(3)+SI(393)+Q(3:3)+sB1(3)+,A2(3)+sB82(3)+,A1QI(3+3),A2Q1(3,3),
*QB2QI(3+3)+SA1SI(3+3)e¢SA2ST(3+3)+QA1QI(3+3),QA2Q1I(3+3),
*AL1SI(3+3)9T11(393)eT31({3+3)eT1(3+3)sT3(3+3)eT41(353)+721(3,3)

COMPLEX T4(393)+sTVRI(3,3)sVR(3)sCR(3)eVS(3)+CS{(3)sV3A1(1024),
*CSA1(1024).CS581(1024),CS5C1(1024)VFA(1024),VFB{1024),VFC(1024),
(¥T2J(3+3)+sT4I(3:3)+T2IT1{303)sT41IT3(3+3)+2T723(3+3),72143(3-3),
*A2SI(3+3)9QBL1QI(3s3)sVSC1{(1024)+sT21{3s3)+A1(3)+,GAMA{3)

COMPLEX CFB8(1024),CFC(1024),TVR(3+3)+sCFA{1024),VSB1(1024),
¥APLE393) eBPL(393)sCPLI{3+3)sAS(393)eBS(3,+3)AJFS,V52(3),U1(3+3)»
*ZGTS{3+3)+9ZF{393)9ZLD(3+3)sYP(3¢3)sVSP{3)+sCSP(3)+ZP{3+3)+CS2(3)»
HECMPL X s CEXPsCSQRTsEV{I93) o ZNCLMDA(3) sC(3+3)+TI(3.,3)CFFA

COMPLEX VRO(3)+sCRP(3)+CSSI3:s3)sVF(3)4DPL(3+3)+DSS(3+3)+ZABCW(4+4),
*¥SIZ{3+3)+GSIZ(3+3)+20(3+3)+201(3+3)+BlQAI(3:3)+3201(3+3)5T22(3+3)>
*¥T42(343)+QIZ0I(3+3)+B1QIZI(3:3)+B2QTZI(3+3)+¢T111(3+3)+T311(3+3)»
¥CFFB+CFFC+ZFTH,CWK(129)

DIMENSION IWKI{8)+:ST(129),CT(129) FREQU(129),AMAG(129)

DIMENSION WA(18) VRM(3)+TIME(1024),WK(30)CCSL1{(1024)+CA(3+3),
*CRM{3)+PHVR(3)sPHCR({3)4VSPM(3)+PHVS{(3) +CSPM{3),PHCS(3)»
¥CCF{1024),VAS1{1024),VRS1{1024)+VC51(1024),CAS1(1024)+CES1(1024),

LLT
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*VAF{ 1024 ) VBF(1024)+sVCF(1024)+TAF(1024)+CBF{(1024})sP(44+4) ,PABC(3,3)
PI1=3.1415927 )
W0=120+%P]

READ{(S+9)MsNs NIy NCASEWNFT
READ{Ss10)RFeXLF sDWsUAA» DI W9 ZBG
REAC{S5+10) DABsDACsDBC+DS+DWS,RA
READ(S+10)HAAHAB+HACIHWW HAW +HBW
READ(5+,10) RWDAWsDBWIDCW,s XL 4 X1
READ(5+10) RO+GTXSsGTXM+RDP,RW+2ZBASE
FORMAT{SII10) .

FORMAT (6E1346)

X2=XL-X1

REkRR R RERKTEERK Rk RER Rk kR kX
* STEADY SYATE CONDITION *
Ak R ERRRKEE R KKK KR AR R ERE XX

8LT

COMPUTE THE IMPEDANCE AND THE ADMITTANCE MATRICES.
RPA=RA+RDP

RPW=R¥+RDP
WLAA=412134*%AL0OG{2730/DS)
WLAB=.12134%AL0OG(2790/DAB)
WLAC=412134%ALOG(2790/DAC)
WLBC=412134%AL0G(2730/08C)
WLG=e12134%ALOGI2790/DWS)
WLAG=+12134%AL0OG(2730/DAW)
WLBG=412134%ALOG{(2790/DBW)
WLCG=e¢12134%ALOG(2790/DCW)
ZABCW(1+1)=CMPLX(RPAWLAA)/ZBASE
ZABCW(142)=CMPLX{RDP WLAB)/ZBASE
ZABCW(1,3)=CMPLX(RDP+WLAC)/ZBASE
ZABCW(1,4)=CMPLX{RDPWLAG)/ZBASE
ZABCW(2+2)=ZABCW(1l+1)

ZABCH(2+ 3)=CMPLX{(RDP,¥WLBC)/ZBASE
ZABCW( 2+ 4)=CMPLX(RDP +WLBG)/ZBASE
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ZABCW(3,3)=ZABCW{1,1)
ZABCW(3,4)=CMPLX{RDD,WLCG)/ZBASE
ZABCW(4+4)=CMPLX(ROW,WLG)/ZBASE
ZP(1+1)=ZABCW(141)-ZABCW{1+8)%ZABCW(14+4)/ZABCW(A,4)
ZP(1+2)=ZABCW(1+2)-ZABCW(1+,4)%ZABCW(2,+4)/ZABCW(4+4)
ZP(1e3)=ZABCW(1,+3)-ZABCW(1+4)%ZABCW(3:4)/ZABCW(4+4)
ZP(2+2)=ZABCW(2,2)-ZABCW(2,4)%ZABCW(2+:4) /ZABCH (4 44 )
ZP(2+3)=ZABCW(2,3)-ZABCW(2+,4)%ZABCW(3:4)/ZABCH(4,4)
ZP{3+3)=ZABCW(3+3)-ZABCW(3,4)1%ZABCW(3,4)/ZABCW(4,4)
ZP(241)=ZP(1,2)

ZP{341)=2ZP(1,3)

ZP{3+2)=ZP(2,3)

CALCULATION OF THE CAPICITANCE OF THE TRANSMISSION LINE.

CACULATION OF MATRIX ®*pe¢ [N MI/MF
P(1y,1)=11.185%AL0OG(2%*HAA/DAA)
P{1+2)=11.185%«AL0OG(HAB/DAB)
P(1+3)=11.185*%ALOG(HAC/DAC)
P{le4)=11.185%kALOG({HAW/DAW)
P{2:+4)=11.185%ALOG(HBW/DBW)
P{2+,2)=P(1,1)

P{2+3)=P(1,2)

2(3+3)=P{1,1)

P(3+4)=P(1,+4)
P{494)=11185%ALOS{2¥HWW/DWW)
PABC(191)=2(11)-P(1+4)%P(1+4)}7P(4,:4)
PABC{1:2)=P{1+2)-P(1:44)%D{2,4)/P(4+4)
PABC(143)=P(1+3)-P(1,8)%P(3,4)/P(4+4)
PABC(2+2)=2{2+2)-P{2:4)%P(2,+,4)/P(4+4)
PABC(2:3)=P(2+43)-P(2:+4)%P(3:4)/P(4+4)
PABC(3+3)=P(3+3)-2(3+4)%P(3+4)/P(4+4)
PABC(2,1)=PABC(1,2)
PABC{3,+1)=PABC(1,3)
PABC(3,2)=PABC(2,3)

FIND THE INVERSE OF MATRIX *p? AND THAT IS MATRIX
DO 401 [=1.,3

£

IN MICeFo/MI

6.1



402
401

403

211

363

367
368

D0 402 J=1.3

ULTI +J)=CMFLX(PABC{I+J)+0eD)

ClieJ)=(CeD9040)

C(IsI)=(160+040)

CALL LEQTIC{UL43+3+C+353+0sWA,IER)

IF(IERNEL0)GO TO 1111

TO FIND ®*C* IN FARAD AND 'YP* IN PeUe

DO 403 1I=1,3

DO 403 JU=1,3

CA(I4+J)=—CABS(C(1I+J))%*1.,E~-06
CA(I+I)=CABS(C(I,1))*1.E-06

YP(I s J)=CMPLX(0-0+sCA(I,J)%WDI*XZBASE

CONT INUE

LOAD IMPEDANCE MATRIX AND CALL [T (ZLD)

DO 211 I=1,3

READ(S+10){ZLD(1+J)+Jd=1,+3)

CONT INUE

READ THE VOLTAGES AND CURRENTS AT THE Re.E+OF THE TRANSMISSION LINE.

READ(S+10){VS2(1)+1I=1+3)

READ(S+10)(CS2(1)eI=1+3)

CALL SUBROUTINE TO FIND THE CONSTANYS A,8,C,6D AT THE SENDING ENDe

CALL ABCD(XL 9sZPoeYP o+ APL +BPL,CPL 4DPL)

CALL SUBROUTINE TO FIND YHE CUONSTANTS A¢BeCe&D AT THE FAULT LOC.

CALL ABCD{(X2+ZP+YP,AS+BS+CSS,DSS)

CALLL SUBROUTINE TO FIND VGLTAGES AND CURRENTS AT THE FAULT POSIT.

CALL VRIR(VS2+4CS2+sAS+BS+CSSsDSSsVRPICRP¢VRMsCRM,PHVR PHCR)

WRITE(6,363)

FORMAT(®07,4,10Xs *PREFAULT VOLTAGES & CURRENTS AT X1%s// 510X ® kkkkdkx
Ak AR E R Ak E R R ERTRRRRE R LT REE ¢ // 312X VRM? 921 X+ "PHVR?® 420X
¥'CRM* 421X, *PHCR?)

20 367 1I=1,3

WRITE(6+368) VRM(L)+PHVR{I) CRM(I) +PHCR(I)

FORMAT(*0%510X+4(E13.64,11X))

CALLL SUBROUTINE TO FIND VOLTAGES AND CURRENTS AT THE SeEe

CALL VRIRIVS2+CS52+sAPL+BPLICPLIDPLIVSPCSP,VSPM,CSPM,PHVS ,PHCS)

08T
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3¢€1l

366

20
15

WRITE(H+361)

FORMAT(*0',10Xs *SENDING PREFAULT CONDITION® // s 10X o* bk kkkk FEEXEXK
FEK KA KREETREERI 3/ /31 2XKe *VSPMTY ;20X *PHVS? 3 20X ¢ *CSPM* 420X, *PHCS*)

DO 366 1=1,3

WRITE(6+363) VSPM(I)«PHVS(I) CSPM(I)+PHCS(I)

Tk kbR kg xRkkkkk

¥ TRANSIENT CONDITION %
kb dkkkkkkkkkkkkkksx

Dw=DwxpP]
DWC11=DW%CA(1,.1)
DWC12=DW*CA(1,2)
DWC13=DW*CA(1.3)
DNC22=DW%CA{(2,2)
DWC2 3=DW*CA( 2,3}
DWC33=DW*CA(3,3)
DO 1 IK=1,N
14=2%[K-1
AJ=FLOAT(IJ)/2.,0
W=DW*AJ
FREQ=W/(2.0%P])
GENERATOR AND TRANSFORMER IMPEDANCE MATRIX AND CALL IT (ZGTS)
GTLS=GTXS/%0
GTLM=GTXM/ %D
DO S [=1,3
DO 7 J=1.3
ZGTS{IeJ)=—CMPLX{(DWXGTLM)» (WXGTLMY))
ZGTS{I»1)=CMPLX((DW:XGTLS) (W%XGTLS))
INPUT FAULT IMPEDANCE MATRIX
DO 15 [=1,3
DO 20 J=1+3
ZF(T+J)=(0e0,0,0)
ZF( I I)=CMPLX{ (RF+DW¥XLF ) sWkXLF)
COMPUTE THE IMPEDANCE AND ADMITTANCE MATRICES OF THE Telo

18T



COMPUTE THE RZSISTANCE OF THE CUONDUCTORS 8Y BESSEL FUNCTICN.
{A) FOR THE THREE PHASE CONMDUCTAORS
RMA=,0636*SQRT (FREQ/A)

BERMR=1e—(RMA) ¥%4/64G,
BERMRP=-{RMA)%X%3/16.

BEIMR=(RMA) ¥*2/4,

BEIMRP=({RMA)/2.

RAA=RA*RMA/ 2, * ( (BERMR*BEIMRP-BEIMR*3ERMRP )/ (BERMRP* ¥2+3E IMRP*%2))
{B) THE RESISTANCE OF THE GROUND WIRE
RMW=,0636*SART (FREQ/RW)
BERMW=1-(RMW)%%4/064

BERMWP=={RMW)%*%*3/164

BEIMW=(RMW) *&2/4,

BEIMWP={RMW) /2.

RWW=RW*RMW/ 2% ({ (BERMW*BEIMNP-BEIMW*BERMWP ) / (BERMWP*x¥2+BEIMWP*%2))
RD=1.588%,1E-02%FREQ

R=RAA+RD
DE=DW#¥*.3219E-03*ALOG(2160.*SQRT(RA/FREQ))
DWL =DE-«3219E-03%ALOG(DS) *DW
DWLAB=DE-«3219E—-03*ALOG (DAR ) %DW
DWLAC=DE-e3219E-03%ALOG(DAC )*DW
DWLBC=DE-<3219E-03*ALOG(DBC)*DW

DWL G=DE-+3219E-03*ALOG(DWS) *Dw

DWL AG=DE-,3219E-03+%ALCG(DAW ) *D¥

DWL BG=DE-+3219E~03%ALOG (DBW) *DW
DWLCG=DE-+43219E~-03*ALOG{DCW)*DW
Z(1+1)=CMPLX{{R+DYL) +yDWL%XAJ)/ZBASE
2(1.+2)=CMPLX{{RD+DWLAB) DWLAB%*AJ)/Z3ASE
Z(14+3)=CMPLX( (RD+DWLAC) 4DWLAC*AJ)/ZBASE
Z(1+4)=CMPLX{ (RD+DWLAG) DWLAG¥AJ)/ZBASE
Z(2+2)=Z(1,41)
Z{2+3)=CMPLX( (RD+DWLBC) +DWLBC*AJ)/ZBASE
Z(2+,4)=CMPLX{ (RD+DWLBG) DWLBG%AJ)/ZBASE
Z{(2+3)=Z(1,1)
Z(3+:4)=CMPLX( (RO+DWLCG) +DWLCG*AJ)/ZRASE

28T
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45

24 +3)=CMPLX({RWW+RD+OWLG) s DWLG*AJ ) /ZBASE

ZABC(191)=Z(1+1)-Z{144)%2{1+4)/72(4,4)
ZABC(142)=Z2{1+2)-2(1:4)%2(2+8)72(4,+4)
ZABC(143)=Z(1+3)-2(1+4)%2(3:4)72(4,4)
ZABC(2+2)=2{24+2)-2(2+4)%2{(2+4)7Z2(4+4)
ZABC{243)=Z(2+3)-2(2:4)%Z2(3,4)/72(4,4)
ZABC(393)=2(3+3)-2(3+4)%Z(3+4)/72(4,4)
ZABC(24+.1)=ZABC(1,2)
ZABC(3,1)=ZA8C{(1,3)
ZABC(3,2)=ZABC(2,3)
YABC(1,1)=CMPLX(DWC11,DWC11%*AJ)%ZBASE
YABC(1+2)=CMPLX{(DWC12+DWCI12%AJ)*ZBASE
YABC{143)=CMPLX(DWC13,DWC13%AJ)*ZBASE
YABC(2+2)=CMPLX(DWC22+:DWC22*%AJ) *ZBASE
YABC(2:.3)=CMPLX(DWC23,D9C23%AJ4)*xZBASE
YABC{3:3)=CMPLX(DWC33,DWC3I3%AJ)*ZBASE
YABC(2+1)=YABC(1,2)
YABC(3,1)=YABC(1,3)
YABC{3+,2)=YABC(2,3)

MULTIPLY ZABC BY YABC AND CALL IT *A?
DO 40 I1I=1+3

DO 40 JJ=1+3

A{TII¢JJ)=(00,040)

DD 40 KK=1,3

AlII»JJI=ACTT+JII+ZABCIIILKK) *¥YABC(KK»JIJ)

CGNTINUE

CALL SUBROUNTINE TO GET EIGENVALUES AND EIGENVECTORS

CALL EIGCCT(A+393+1 +CLMDASEV $3+sWK,IER)
IF(WK(1)eGTe10040)GO TO 3333

O0 4S5 I=1,.3

DO 45 J=1,3

IN=EV{1,J)

EVI(IesJ)=EV(I+J)/2ZN

S(1+d)=EV(I.J)

CCNTINUE

€8T



S0

55

6S
60

75
70

8s

90

DO SO0 I=1+3

DO SO0 J=1,3
QICI+JI=S(Js1)

TO GEY THE MATRIX GAMA
DD 55 1=1,3
GAMA(I)=CSQRT(CLMDA(I)}
GAMAI(I)=1.0/GAMA(I])
CONTINUE

CALL THE SUBROUTINE TO GET THE THE INVEKRSE OF S AND CALL IT Si

DO 60 I=1,3

DO 65 J=1,3

UL{I«J)I=S(1,J)

SI(1:J)={0e60+0.0)

SI(1I+1)=(1e090.0)

CALL LEQTIC(U1+3+93:S1+3+3+s0+WALIER)
IF(IERNE.0)GO TO 1111

DO 70 I=1,.,3

DO 7S JU=1,3

Ui{I»J)=QI{(1,J)

Q(I+J)=(0e0,+060)

QUIsI)=(1.0+0e0)

CALL LEQTIC{ULl +3+3+4Q93+3+0,WALIER)
IF{IEReNE.D)GO TO 1111

FIND SIX®*ZABC AND CALL IT S1Z

DO 85 I=1,3

DO 85 J=1,3

SIZ(1¢J3=(0«0+040)

DO 85 K=1,3
SIZ(I+¢J)=SIZ(T+J)4SI(1,K)*ZABC(K,J)
CONTINUE

COMPUTE GAMA*SI*Z AND CALL IT GS1I1Z
DB Q0 I=1+3

DO 90 J=1,+3
GSIZ{I+J)I=GAMAI(I)%*SIZ(1,J)

FIND ZO WHICH IS EQUAL TO {GAMAI%SI*Z%Q)

AND

CALL IT 20
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DO 120 I=1,3
00 100 J=1+3
Z0(144)=(0e0400)
D3 100 K=1,3
ZG(1+J)=ZC(19J)+S(I 4K)XGSIZ{(KyJ)

100 CUNTINUE
CALL SUBKGOUTINE TG GET THE INVERSE OF Z0O AND CALL IT 201
DC 105 [=1,3
DG 110 J=1,3
UL(TI+J)=20(1,J)

110 ZOIC(I+J)=(0e0+0+0)

105 ZOI(1l+1)=(1-CsGe0)
CALL LEQTIC(UL19393+Z201+4393+0+WALIER)
IF({IERNE-0)GO TO 1111
CALCULATICN OF THE TRANSMISSIGON L INE CONSTANTS
DO 115 I=1,3
Al(I)=eS32(CEXP(X1*GAMA(I))I+CEXP(—X1*GAMA(I1)))
A2(I)=eS*{CEXP(X2%GAMA(I) )+CEXP{(—X2%¥GAMA(1)))
Bl{I)=eS3%(CEXP(X1XGAMA(I))—-CEXP(~-X1%¥GAMA(I)))
B2(1)=eS%#{CEXP{X2*GAMA(I))-CEXP{-X2%¥GAMA(1)))

115 CONTINUJUE
DO 120 1=1,3
DO 120 J=1,3
AlQI(LJ)=AL(1I%FQI(L+4)
A2QI(1+,J)=A2(1)%QI(I+4)
ALlSI(I+J)=A1(1)%SI(1.J)
A2ST(1+J4)=A2(I1)%SI{(1.+J)
BlQIIJ)=B1(1)F*QI(iI,J)
B2CI(I+J)=B2(1)*01I{1,J)

120 CONT INUE
GET S%(COSHeGAMAX1)%QI AND CALL IT (SAl151)
GET S*¥{COSH.GAMAX2)*QI AND CALL IT (SA2SI)
GET Q*%{COSHGAMX1 3 %Q1 AND CALL IT (QAlQI)
GET Q*¥{COShH«GAMX2)%QI AND CALL 1T (QA2GI)
GET Q*%{SINH.GAMAX1)*QI AND CALL IYT (QB1Qi)
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(I0Z10D) 11 711vD OGNV 10Z#10 13°
3NNILNGD

(reI)Ivta(rerlcri=(re1I)seL
(FeNITO2VOXINCTIQIZH(rt T ICHI=(r*1)CY1L
(C*A)I0CEVX(NCIINZH(reI)IvEi=(reI)Ive
(re1xger+trerdici=(re1)et
(CEMYTDTIVOR(METISLOZH(r*T)c2a=(r*1)22Cl
(F*AUYIIDTIE0R(A*TIOZH(r*T)IT2E=(r*T) 12}
£¢1=% Oo»1 QC

(0*0¢0°0)=(r*1)2¥L

(o°0*0°0)=(r*1)I%lL

(o*o*c*0)=(rer1)221L

(oco¢Cce0)I)=(r*1)121

£¢1=r 0%l 0C

€¢1=I O0%1 OC
CYi+1H1=(102VvD)x(Q1Z)+(1D28D)}*x0Z=%1
221+12L=(IDIVYN)*x(S19Z)+(I1DIET ) *x02=21

(1¢€1°21°11) S3IDIYLIVAN S1 3HL 40 NDILIVINDIVD

3NNILNOD
(FeY)I02EX(N*TIIDHIr*T)IDZBO=(r*1)10280
(FEM)IDIGA(NH*TIOH(C*TI)IDICO=(r*1)10180
(FeAU)ISCYRIN*TIISH(reI)IS2YS=(r*1)1IS2VYS
(CE*RNITCSIVR(NC])ISH(re1)ISIVS=(r*1)1S1VvsS
(CeRITOCYR(NCTIIDH(r*1)IOCVYO=(r*1)IDCVYD
(CEX)IDTIVR(NCTIIDH(r¢INIOIVO=(F*TI)IDIVD
£€¢1=3 O£Y OC

(¢c°0¢0°0)=(r*13)10280
(C*°0¢0°0)=(r*1)10180
{(0°C¢0°0Y={r*1)1ocvo
(ceC*C*0)=(r*1)IDIVO
{c*0*0°0)=(r*1)1S2vS
(c*°nep*C)=(re1)isivs

g¢1=r 01 0OC

£¢1=Y 0fF1 DG
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DO 130 I=1,3
DO 150 J=1l+23
QIZGL({L1+30)=(De0+020)
DL 150 K=1+3
QIZCI(L +J)=QIZ0I(1+J)+QI(I+K)IXZOI(KsJ)
180 CONTINUE
. CGMPUTE SINM{GAMAX1)%(QI%201) AND CALL IT {B1aIZ21)
CCMPUTE SINH(GAMAX2)®(QI%xZ0I) AND CALL IT (B2Qiz1)
DU 155 I=1+3
DO 153 J=1+3
Bl1QIZI(1+4)=(0e0+0.0)
B2QIZI(1+3)=(0e0,0.0)
155 CONTINUE
DG 160 I=1+3
DO 160 J=i1.+3
BlQIZIC(I+J)=8B1QIZI{I+J)+B1(1)*QIZ0I(I,J)
82QIZI(1+J)=B2QIZI(1+J)+B2(I1)*QIZOI(1+J)
1€0 CONTINUE
COMPUTE T11=Q%(SINH.GAMAX1)%QI*2Z0I
COMPUTE T31=Q%(SINHeGAMAX2) %QI*ZO01
DO 170 1I=1,3
00 170 J=1+3
Ti11(1+J)=(0e0+060)
T31(1+4J)=1{0+0+040)
DO 170 K=1,3
THI(I5J)=T11(I+J)+Q(1K)XB1QIZI(K,J)
T31{IeJ)=T31(1+J)+Q(1+KI¥B2CGIZI(Ks I}
170 CONTINVUE
COMPUTE T11i1 AND T311 WHERE: T111=ZGTS*T11l AND T311=ZLD%T31
DO 180 I=1,3
DO 180 J=1.,3
T111{(I1+4)=(00,0.0)
T311(1+J)=(0+40,060)
DO 180 K=1+3
TI11C L+ J)=T111( Lo J)+ZGTSLL{+K)I%XT11{KeJ)
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185

195
190

205
200

215

T311(I1eJ)=T311{LsJd) 2L (L +K)IXT31{KyJ)
CONTINUE

20 185 [=1,3

DO 185 J=1+3
TiC1+J)=SAL1S5i(1+0)+Ti11(1,J)
T3(19J)=SA2SI{L+J)+T311(1L+J)

CONTINJE

CALL SUBROUTINE TO GE7T THE INVERSE OF T2 & T4.THEN CALL IT T21
AND T4la

DO 190 1I=1,3

DO 195 J=1+3

J1(1+J)=T2(14J)

T2I(19J)=({0e0+Ce0)

T2I(I3s1)=(1e0s0e0)

CALL LEQTIC(UL33+3+7T21+3+3+0eWAL1ER)
IF(IERNE.0)GO TO 1111}

DO 200 I=1,+3

DO 205 J=1,3

Ul( 1+ 4)=Ta(1+J)

T4l(L+J)=(0e0+0e0)

TAI(I»+1)=(1e¢0+000)

CALL LEQTIC{U193+3+sT41:+3+3+s0sWA,IER)
IF(IER.NE.O0)GD TO 1111

DC 215 I=1.+3

B0 215 J=1,3

T2IT1{I+¢34)=(0.0+0.0)
T4IT3({I9J)={0e0+049)

DO 215 K=1,3
T2ITI(ILI+J)=T2ITI(IL+JII+T2I(T1+XK)ET1(KsJ)
TAIT3(IvJ)=T4IT3(1+2)+TAI{I1:K)¥T3(K,J)
T2143(1eJ)=T2IT1(1+J)+T4IT3(1,+4)
CONTINUE

MULTIPLY ZF%T2143 AND CA _ IT Zv23
DO 225 I=1,3

DO 225 J=1,3
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230
225

240
235

1000

2000

3000

4000
5000

245

Z2T723(1+J)={0e25040)

20 225 K=1.,3

ZT23{1+J)=ZT23(1+J)+ZF (1+K)I¥T2143(<KeJ)
IF(I.EQeJ)G0 TO 230

TVR(1+J)=ZT23(1+J)

GO0 TO 225

TVR(I+J)=10+2ZT23(1,J)

CONTINUE

CALL SUBRODUTINE TO GET THE INVERSE OF TVR AND CALL IT TVRI
DO 235 [(=1,3

DO 240 J=1,3

UL(TI+J)=TVR(1I,J)

TVRI(1+J)=(0e0+4040)
TVRI(IsI)=(160,0.0)

CALL LEQTIC(U133+3:sTVRI$+3¢3+0+WALIER)
IF(IER.NE.0)GD TO 1111

CALL SUBROUTINE TO FIND THE THREE PHASE VOLTAGES AT THE FAULT
LAGCATION (VR)e.

CALL VFT{VRMysWyNO:+D¥W,PHVR,VF)
IF(NFT.EQe1)GD TO 1000

IF(NFT.EQe2)G0O YO 2000

IF{NFT.EQe3)GO TO 3000

IFINFTeEQe4)G0 TO 4000

CALL LLLF{TVRI,T21T7T1,VF,VR)

GO TO 5000 .

CALL LLF(VF 4TI +ZFsVR)

GG TO S000

CALL LLGF{VFeTYI+2ZF,4VR)

GO Y0 5000 )

CALL LGF(VF+TI sZF,VR)

CONTINUE

FINDING THE THREE PHASE CURRENTS AT THE FAULY LOCATION {(CR).
DO 245 1=1,3

CR(II={00+0e0)

CONTINUE
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(W¢T1DSAML44IV TTIVD
(W*TESA)YLSI4IV VD
(W*IVSA)LILIV VD
*NIVWOQ 3WIL1l NI OGNS SNICN3S SHL iv CNV NOILVDOT
1Nvd 3HL 1V SININCAIWOD LINIFydND 3IHL ONV 3IOVITOA IHL SNIONIL
3NNTAINOCD
MARVWOISH(E)SO=(MH13}1DSD
MO*xVYWNOIS%(C)SO=(N1)188D
MO*xVYWO IS (T)ISI=(ANTI)ITIVSD
MOxVWOISKk{EISA=(HI)TIDISA
MAFVROISH*{CISA=INIITIESA
MOXVHNO ISk (T)ISA=(MNI}TVSA
MOXVANOISR(EIUI=(M1)D4D
RO*YWOISH(C)HIHI=(AH1)84D
MORVUYWOIS*(T1)HI=(X1)V4D
MORXVYROISH(EIHA=(T ) DHA
RAFVNOISH(ZIUA=(N1])84A
MOxVYWOIS*(TIUA={I]I) VLA
DUV /UIDUV)INIS=VWOIS
(N) LVvOI3/rvx1d=24yv
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3NNTLINGD
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(r)adx(r*I)121400C)BAX(C*TIIISTIVSH+H(IISA=(1)SA
£¢i=r 092 0C
£¢1=1 092 0OQ
3NNILNOD
{0*Q@*C*°0)=(1)SD
(C*°0°0°0)={1)SA
g£¢I=1 662 0OC
®3°S ZH1 LY SINIYUND CNY SIOVLEITIOA 3ISYHJD 338HLI 3IHL ONIANIS
(CIHAX(C*TITLICL-CTIUDI=(1)HD
£¢3i=r 0S4 0C
£¢1=1 CsL OC
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CALL AIFFT(CSAl,M)

CALL AIFFT(CSBl M)

CALL AIFFT(CSC1l.+M)

CALL AIFFT(VFA,M)

CALL AIFFT(VFBsM)

CALL AIFFT(VFC.M)

CALL AIFFT{(CFA,M)

CALL AIFFT{(CF3,M)

CALL AIFFT(CFC+M)

DT=2+.%PI/(DN*FLOAT(N))

N2=N/4&

DO 26S I=1.N2

JJ=1-1

AJ=FLOAT(JJ)

WOT=WCEDTx%AY

ADT=DW*DT*AY

ATN=EXP{ADT)/PI1
AJFS=CMPLX{COS{PI*AJ/FLOAT(N))sSIN(PI*AJ/FLOATIN)))
VFA{T)=VFA(I)*AJFS

VEB{II=VvFB(I)*AJFS

VFC(I)=VFC(I)®AJFS

CFA(I)=CFA(I)¥AJUFS

CFB{I)=CFBlI)*AJUFS

CFCUI)=CFC(I)*®AJFS

VSAL1(I)=VSAL(I)*AJFS

VSB1(I)=vSBl (I)*AJFS

VSC1{(I1)=VSC1(I)*AJFS

CSA1(I)=CSAL{I)*AJUFS

CsSB1(I1)=CSB1L{I)*AJFS

CSC1(1)=CSCI1(I)*AJFS

TIME(I)=DT*FLOAT{1I-1)
VAF({I)=ATN*REAL(VFA(I))+VRM{1)*COS(WOT+PHVR{1))
VBF(I)=ATN*REAL(VFB(I))+VRM(2)*COS(WOT+PHVRI(2})
VCF(I)=ATN*%REAL(VFC(I))+VRM(3)*COS{WOT+PHVRI(3))
CAF(I)=ATN*REAL(CFA(I)})+CRM(1)*COS(WOT+PHCR(1})

161



265

264

269
268

266

267

4560

455

CBFUI)=ATN*REAL(CFI(I))+CRM(2)*CCSIWOT+2HCR(2))
CCFLI)=ATN4%REAL(CFC{I))+CRM(3)*CCS{WOT+PHCRI(3))
VASTI(I)=ATN¥REAL(VSAI{I))+V3PM(1)*CAOS(WOT+PHVS(1))
VBS1(I)=ATN*REAL(VSB1(1I))+VSPM(2)*xCOS(WOT+PHVS(2))
VCSTI{I)=ATN¥REAL(VSC1(I1))+VSPM(3)*COS(WOT+PHVS(3))
CASI(I)=ATN*REAL(CSAL1{(T1))+CSPM(1)*COS(WOT+PHCS{(1))
CBSI{I)=ATN¥*REAL(CSBI1(I))+CSPM(2)%COSIWOT+PHCS(2))
CCS1(I)=ATNE&REAL(CSCI1(1))+CSPM{3)*xCOSIWOT+PHCSI{3))

CONT INUE

WRITE(6+264) X1

FORMAT(*1¢,10Xs*CURRENTS & VOLTAGES AT FAULT LOCATION FOR 3 PHASE
¥FAULT AT ' 3E13e0s " MILES® /710X o® kkhkkkhkk kR ki kA CkEE ARk EXkKkE
A RE R KR E R AR ERE R TR R R E LR RFC R R KKK KRR REEEEE T 3/ /48X * TIME® 15Xs *VAF?
Kg1SXs'CAF* 3 1S5Xe*VBF ! L ISXs'CBF ¢, 15X 'VCF®,15Xs*'CCF?)

DO 269 I=1.N2

WRITE(6+263) TIME{(T1)4VAF{I1)+CAF{ 1) VBF(1I)+CBF({1)sVCF(I) CCF(I)

FORMAT(4Xs7({E13e6+5X))

WRITE(6+266) X1

FORMAT(*®*1°*,10X,*SENDING END CURRENTS & VOLTAGES FOR 3 PHASE FAULT
% AT 4E1306s*MILES? ¢ // 010X oV kkkkk kb kXX bk ke hFhh kb krerkkky
REE KKK E R R KRR KR FEIEE KRR RERKk K 3/ /B TIME® s 15X *VAS* 315X *CAS
¥% 415X 'VBS? 413X 'CBS?*415Xe*VCS", 15X *CCF )

DO 267 I=1,N2

WRITE(6,268) TIME{I),VASI(I),CAS1(I),VBS1(I1),CBS1({1).VCS1(1I),
¥CCsi1(1)

FINDING THE MAGNITUDE OF THE SENDING END VOLTAGE OF PHASE A AT

DIFFERENT FREQUENCY COMPONENTS B8Y USING SUBROUTINE FFTSC.

CALL FFTSC{VAS1sN2¢ST+CTsIWNKsWKe CWK)

WRITE(6+460)

FORMAT(*1¢,10X,*THE MAGNITUDE OF THE FREQUENCY COMP. OF THE VOLTAG
¥E OF PHe A (VSA1l) AT THE SeE e s//+10X ¢ 2kt kEkbhktrkhkkkkkE kb kEkEkk
XA EKKR KR ERERF R RT KRR KRR AR E Rk kR A RSk F XA Rk k% %k 3/ /420X s *FRE
*QUENCY® 220X, *MAGNITUDE?)

FORMAT(20X+2(E11¢4,18X))

DO 450 I=1,129

C6T



aNaNaNeNg)

4S0

1111
2222
3333
4444

FREQU(I)=FLOAT(I~-1)*%1540
AMAG(I)=SART(ST(I)*ST{I)+CT(1)*CT(1))/FLOATI(N2)
WRITE{E,4553)FREQU(I ) +AMAG(I)

CONTY INUE

CALL ING GRAPH TO O3TAIN THE WAVEFORMS OF THE VOLTAGE & THE CURRENT
AT THE FAULT LOCATION AND AT THE SENDING £NDe

CALL ORIGIN{(QGe05+060:5)

CALL GRAPHI(NI+TIMEesVAS1 41210197 ¢96e30e90e¢30e30es*'TIME IN SECeit?y"*
¥PU VOLTAGESI'"+*'THREE PHe FeAT X1 ;' 49SENDe £NDe VGE VASL1:*)

CALL GRAPHS(NIeTIME,.VBS1+42,101+*SENDe ENDs VGE VBS13?)

CALL GRAPHS{NIs TIMEsVCS1+3+101,°"SEND. ENDe VGE VCS13¢)

CALL GRAPH(NISTIME,CAS1+13101970+6030090e30030a9*TIME IN SECs;*,!?
*¥PU CURRENTS: ' s *THREE Pte FoAT X1 5*4,*SENDe ENDeCURRs CAS1:*)

CALL GRAPHS{(NI» TIME .CBS1+2:,101+°'SENDe ENDe CURR. CBS13:°?)

CALL GRAPHS(NI +TIMECCS1+3,101,4 *SENDe ENDs CURR, CCS1:°*)

CALL GRAPH(NI +TIME,VAF 313101 37096090903 ¢30e30es?TIME IN SECes?y?
*PU VOLTAGE;? 4 *THREE PHe Foe AT X1 :;','VGE OF PHe A AT Fe3?)

CALL GRAPHS{I{NI s TIME VBF +2,101,*VGE OF PHe B AT Fe ;')

CALL GRAPHS{(NI+TIME+VCF+343101+*VGE OF PHe C AT Feis?)

CALL GRAPH(NI yTIME+CAF 319101 37 0+6090e90ea90090es?TIME IN SECe3',?
*PU CURRENT® *THREE PHe Foe AT X13%+*CURe OF PHe A AT Feo:*)

CAaLL GRAPHS(NI+TIMEsCBFs24101,'CURe OF PHe B AT Fe3')

CALL GRAPHSINIsTIMESCCF 9321013 CURe OF PHe C AT Fe )

GO TO 4444

WRITE(6,2222)1IKs lER

FORMAT(*0',2110)

WRITE(6+2222)WK, IER

CONT INUE

STOP

END

Ak kA kkk ke kR K kX
* SUBROUTINE ABCD =
XEk A KEERKEKEE R xR K%
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280

285

295
290

305

300

310

315

SUBROUTINE ABCD(X14ZPsYPsAP+BP+CP+OP)

COMPLEX AP(3+3)+s8P{3+3)+sCP(3+3)e2Y2{393)+4ZP(3:43)sYP{(3+3)»
#SZYP(343)+sZYPI(343)9SZYPI(3+3)+ZPI(343)+,COSZYP{(3+3).DP(3:3),
XkSINSZY(393)+C0OSSZY(3433)+ZCI{(3+3) ,TEMP(3,3)}

DIMENSION WA(13).,0u(3,3)

MULTIPLY ZP%xyYP AND CALL IT ZvyP

DO 275 1I=1,3

DO 275 J=1,3

ZYP(1:0)=(0040.0)

DO 280 I=1,3

DO 280 J=1,3

D0 280 K=1,3

ZYP(13J)=2YP( L1 J)+ZP(I+K)XYP(KsJ)

FIND THE SQRT OF ZYP AND CALL 1T SZyYP

D0 285 I=1,3

D0 285 J=1,3

SZYP(14J)=C3ART(2ZYP(1,J))

FIND THE INVERSE OF SZYP AND CALL IT SZYPRI

DO 290 I=1,3

DO 295 J=1,3

TEMP(I2J)=SZYP(I1,J)

SZYPI(14J)=(0.0+0.0)

SZYPI{I+s1)=(1e0+0.0)

CALL LEQTIC(TEMP 33+3+SZYPI+3+3+s0sWA,IER) .

FIND THE SINSH AND COSH WHICH ARE EQUAL TC (EX1-EX2)/2+ AND (EX1+EX2)/2.

DO 300 I=1,3

DO 305 J=1+3

U{leJ)=0e0

U(Iel)=140

20 310 [=1,3

DO 310 J=1,3

SINSZY(1+J)=SZYP(1+,J0)%X1

DC 315 I=1,3

DO 315 J=1,3

COSSZY(I4J)=U(T4J) +aS5EX1E(X1XZYP(I,+J)
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360

301

302

320
314

330

335

DG 360 1=1,3
DO 36C J=1.3
AP(144)=COS3ZY(I.+J4)

MULTIPLY SINSZY * 53ZYPI * ZP WHICH IS EQUAL TO BP

DO 301 I=1.3

D0 301 J=1,+3

ZCI(14J)=(0e04060)

DG 301 K=1,3

ZCI( T J)=ZCIC T2 JI4+SINSZY(I+K)%XSZYPI(K,sJ)
D8 302 1I=1,3

DO 302 J=1,3

BP(I+J)=(0.0+0,0)

DO 302 K=1,3
BP(IvJ)=8BP(I+J)+ZCI(I+KI*ZP(KsJ)

FIND THE INVERSE OF MATRIX ZP AND CALL IT ZpPl
DO 314 I=1,3

DO 320 J=1,3

TEMP(I+J)=2P(1+J)

ZPI(1+4J)=(0e0+060)

ZP1(I1+41)=(1e05040)

CALL LEQTIC(TEMP ¢3+3+ZP1+3+3+:0.,WA,IER)
MULTIPLY ZPI % SZYP AND CALL IT Zyol
DO 330 I=1,3

DO 230 JU=1,3

ZYPI(1+J)=(0e0+0e0)

DO 330 K=1,3
ZYPI(1+4J)=2YPI(1+4J)+ZPI(1,K)%*SZYP(K,J)
MULTIPLY SZYP x SINSZY TO GET CP

00 335 1=1,3

DO 335 J=1,3

CP{I+J3=(0e04+040)

DG 335 K=I,J
CP{IsJ)=CP(IsJ)+SZYP(I+K).SINSZY(KsJ)
MULTIPLY ZPI % CCSSZY AND CALL 1Y COSZyYP
DO 240 I=1,3
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00 340 JU=1,3
COSZYP{1+4J)={0s0+2.0)
D0 340 K=1,3
340 COSZYP(I1+J)=C3SZY2P([+J)+ZPI(1.K)*COSSZY(KsJ)
MULT IPLY COSZYP * ZpP AND CALL IT DP
DO 345 I=1,2
20 345 J=1+3
DP(1+J)={00+0e0)
DO 345 K=1,3
345 DP(L+J4)=DP(I+J)+CASZYP{IK)EZP{KJ)
RETURN
END

kfkkkkkkkkkkkkkkkk
* SUBROUTINE VRIR *
kkpkkkhkkkkhkhkkkk&¥

SUBROUTINE VRIR(VS22;CS22+APP sBPPsCPPsDPPsVVeCLCeVMeCMePHYV s PHC )

COMPLEX VS22(3)+CS22(3)sAPP(3+3) +8PP(333)+CPP(343)sVV(3)CCL(3I)»
*DPP(3,3)
DIMENSION CM(3),VM{3)PHV(3) +PHC(3)
DO 36S I=1,3
VV(I)=(00+060)
CC(I)=(0e0+0.0)

365 CONT INUE
DO 370 I=1,3
DO 370 J=1,3
VWIII=VVII}+APP(I+4J)%VS22(J)4BPP(1,J)%CS522(J)
CC{II=CClIL)+DPP(1,J)%CS22(J34+CPP(1,J)%VS22(J)

370 CONT INUE
DO 371 I=1.3
VM(I)=CABS(VV(I))*SQRT(2.0)
PHVII)I=ATANZ2(AIMAG(VV(I)).REALIVV(I)))
CM(I)=CABS{CC(1))*SQRT(2.0)
PHC(I)I=ATAN2(AIMAG(CC{I)),REALICC(I)))

[N . S
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371

245

250

CONT INUE
RETURN
END

kk&hkkkkkEkkkFEkkkEx

* SUBROUTINE VFYT
kkkkhkkkkkkbkrrkkkk

SUBROUTINE VFT(VFMsWsWODWPHFSVFP)

COMPLEX VFP(3)sEJPH(3)EJPHC(3) s VF(3) yCMPLXyEPL14EP2
DIMENSITN VFM(3) +PHF(3)
EP1=10/CMPLX{DW,(W-W0))

EP2=1.0/CMPLX(DW, (W+¥W0))

DO 3 I=1,3
EJPH(T)=CMPLX(COS(2HF(I))+SIN(PHF(I:))
EJPHC(I)=CONJG(EJPH(I))
VEP(I)=—eS*x(VFM(I))*(EPL*EJPH(I1)+EP2*EJPHC(I))
CONT INUE

RETURN

END

EhE Rk E Rk kkkkkkkkyx
* SUBROUTINE LLLF =
¥ Ak ok ok 3k oakook koK ok ko kok & ok

SUBROUTINE LLLF(TVRI+T2ITI+VF,VRF)
COMPLEX TVRI(3+3)+T2IT1{3:+3)sVF(3),VRF(3)
DO 245 I=1.3

VRF{1)={0e09040)

DO 250 I=1.3

DO 250 J=1.3

VRFIUT)=VRFII)+TVRI(I +J)*VF(J)

RETURN

END
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CRFA==VF(L)}/(TI(141)+ZF{1,1))
VRF(1)=~-TI(1,1)%CFA

VRF (2)=-T1(2,1)%CFA
VRF(3)=-TI(3+1)*CFA

RETURN

END

3 %k ok ok ek & i ok ke ke 3ok 3 ok
* SUBROUTINE AIFFT x*
LIS S 23T L2 2L LS 2 3 20

SUBROUTINE AIFFT (X, M)
COMPLEX X(1024)sUeWsT,CMPLX
N= 2% %M

NV2=N/2

NMi=N-1

J=1

BIT REVERSAL SECTION

DO 30 I=1,NM1

IF(I «GEeJ) GO TO 10

T=X( J)

X(J3)=xX(1)

X(1)=7

K=NV2

IF{KeGEedJ) GO TO 30

J=J-K

K=K/ 2

GO TO 20

J=J+K

PI=3.14159265358979
CALCULATION OF THE COMPLEX MULTIPLING
FACTORS; AND THE BASIC BUTTERFLY SECTION.
DO S0 L=1M

LE=2%%L

LELI=LE/2
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* SUBROUTINE LLF =
Bk ek ek kk kKX

SUBROUTINE LLF(VF,,TI ,ZF 4 VRF)
COMPLEX VF{3)+sTI(333)+ZF(3+3),VRF(3),CF8

CFB=(VF(2)-VF(3) )}/ (TI(2+3)-TI(2+2)-TI(343)+TI(342)-ZF(1s1))"

VRF(1)={TI{(1,3)-TI(1,2))*%CFB
VRF(2)={TT(2+s3)-T1(2,2))%*CFB
VRF(3)=({TI(33)-TI{(3,2))%CFB
RETURN

END

REFEERERERXEX KT R EEE

* SUBROUTINE LLGF =x
ke kxR RkEkEEEKE

SUBROUTINE LLGF{VF»TI+sZFsVRF)}

COMPLEX VF(3)sTI(343)s ZF(3+43)sVRF(3)+CF3+CFCLWZFT
ZFT==(ZF (11 )+TI(3:3))/T1(2+3)
CFB=—{ZFTxVF(2)+VF{3))/(ZFTX(ZF(1+1)4TI(2,2))4T1(3,2))
CRC=—((ZF (14 1)+TI(2+,2))%CFB+VF(2))/T1(2,.,3)
VRF{1)=—TI(1,2)*CFB-TI(1+3)*FFC
VRF{2)=—TI(2:2)%CFE~-TI(24,3)%CFC
VRF(3)=-TI(3,2)*CFS-TI{343)%CFC

RETURN

END

EE XS X222 222 R 22 RS

¥ SUBROUTINE LGF %
ExkE ke kb kEkEREE kK

SUBROUTINE LGF(VF,.TI,ZFsVRF)
COMPLEX VF(3)sTI(3+3)4+ZF(3+3)CFALVRF(3)
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S0

Uz=(1e0s0D)
W=CMPLX{COS{PI/FLIAT(LEL)) »SIN(PI/ZFLCAT(LEL) })
20 SO J=1.LE1L
DO 40 I=JeNsiE
IP=1+LE!L
T=X(1P)%U
X(IP)=X(I}-T
X{I)=X(1)+T
U=sUxw

RETURN

END
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