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I. INTRODUCTION 

A. Background and Objectives 

An abrupt change in boundary conditions, such as the actuation of a 

switch or the inception of a fault, will induce transients in an electri

cal power system. Although a power system is in a steady state most of 

the time, it must be designed to withstand worst possible stresses to 

which it may be subjected. These extreme stresses usually occur during 

transients. Consequently, power system design is determined by transient 

conditions, rather than by steady state behavior. The size of trans

mission line towers, the clearances for transmission line conductors, 

insulation of windings in power apparatus, rating of circuit breakers, 

loading capability of equipment—all of these specifications are dictated 

by considerations of power system transients. 

The solution of the system equations depends upon the model of each 

part in the system. Thus a transmission line may be treated as a short 

bus section, as an infinitely long line, or as a distortionless line, 

depending upon the specific transient phenomenon being investigated. 

Similarly, a transformer may be represented by an Inductance, by a net

work of capacitances, or by a combination of the two. Conceptually, one 

could imagine a mathematical model for a component which represents It 

correctly under all circumstances. However, even If such models existed, 

they would be cumbersome and inefficient simulation programs. 

The model of the transmission line is the most important element in 

the analysis of fault Induced transients on a power system. The 
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transmission line has four distributed parameters: a series resistance 

(R), a shunt conductance (G), a series inductance (L), and a shunt 

capacitance (C) per unit length. The analysis of transients may Involve 

differential equations. These equations are always solved under condi

tions where simplifying assumptions are made. Typical assumptions are 

lumped parameters, frequency independent parameters, or completely 

transposed line. However, these assumptions should only be used for 

restricted conditions for which they are valid. Also a great advantage 

using distributed parameters is that, once a general solution is found, 

a fault occurring anywhere on the line can be simulated. In a lumped 

parameter model, the only available line locations are the discrete 

points of the interconnected sections. 

Transformers or rotating machines are typically represented by an 

inductance, sometimes with capacitance at its terminals. Such represen

tations may be adequate if the fault location is remote from the termit-

nals. When the fault location is close to the source, this representa

tion is questionable. In such cases, a more accurate machine model is 

needed. Therefore, representing the transmission line without unreason

able assumptions and with a more accurate machine model would improve 

the accuracy of the current and voltage waveforms that would be deduced 

from a simulation. 

Transients due to fault Inception on a power system may produce 

overvoltages, overcurrents, and abnormal waveforms. 
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Overvoltages: 

A fault gives rise to induced voltages on the unfaulted phases, and 

often the switching surges produced by the fault are causes of signifi

cant overvoltages. The design and insulation coordination of power 

apparatus and systems are determined by overvoltages. The system insula

tion level must be sufficiently high to assure reliability, but at the 

same time there are strong economic reasons for keeping it as low as 

possible. As a result of these opposing factors, a much greater emphasis 

is being placed on predicted system overvoltages at the planning stage, 

in order that steps may be taken to reduce their severity and to minimize 

the system insulation level. 

Overcurrents: 

Overcurrents result from system faults and their study helps deter

mine the interrupting duty on circuit breakers and the mechanical and 

thermal stresses within machines, transformers, and buses. Unbalanced 

fault simulation is often required for determining the currents in 

machines. An accurate representation of the machines during fault 

transient is required for the boundary condition. 

Abnormal waveforms: 

The waveforms of power system voltages and currents during the 

first few cycles following the fault occurrence are of considerable 

importance. For example, the response of a protective relay to the 

fault generated transient waveforms is of great concern in determining 

its reliability for a given application. Certain control equipment. 
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such as the automatic control system of HVDC systems is sensitive to the 

waveforms and harmonic content. 

Simulation of all these system conditions requires an accurate 

representation of power systems during the transient period. 

B. Scope of the Work 

The main objective of this work Is to develop an accurate digital 

simulation of a typical power system du ing the fault transient period. 

The work contains the following parts: 

1. Modeling of the transmission line. 

2. Solution of the transmission line equation. This procedure Is 

general and can be used to find the transient and steady-state 

solutions for the transmission line equations without Imposing 

unrealistic simplifying assumptions. 

3. Modeling the fault. 

4. Developing a method that makes the machine and transmission line 

equations mutually compatible. This method is based on finding 

a transformation matrix that transforms the synchronous machine 

equations from the 0-d-q components to the 0-1-2 components in 

frequency domain to account correctly for the variation of the 

machine parameters. 

5. Formulation of the transmission line equations with the machine 

equations. The machine equations are based on the simple 

machine model and the full machine model. 
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6. Development of a FORTRAN computer program for simulation. This 

program allows for frequency dependent parameters and 

untransposition of the transmission line along with the simple 

or full generator model. The program is used to obtain the 

three-phase voltage and current waveforms at the fault location 

and at the sending end. 

7. Conclusions based on the comparison of the different cases. 

Such comparisons illustrate the effects of the different 

assumptions and when they can be applied without jeopardizing 

the solution. The effects of the following factors on the fault 

transient waveforms are examined: 

• skin effect 

• load level 

• fault location 

• type of fault 

• generator size 

• fault impedance. 
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II. LITERATURE REVIEW 

A. Transmission Line Model 

Transient phenomena in power systems have been studied by many 

authors. In 1855, William Thomson investigated the theory of transients 

on long cables by assuming the magnetic effect to be negligibly small. 

He considered only the resistance R and the capacitance C per unit length 

and derived the well-known diffusion equation for which J. B. J. Fourier 

(1822) had given solutions. In 1857, Klrchhoff, who formulated the two 

well-known electric circuit laws, had extended the long-line theory to 

Include the effect of self-induction and also at that time deduced the 

finite velocity of propagation of electromagnetic waves. Heavlslde also 

examined the induction-effect in 1881 and established what is now known 

as the traveling-wave solution. In 1886, he introduced for the first time 

"leakance" (also known as shunt conductance) as the fourth parameter into 

the transmission line equations and later formulated the conditions 

necessary for a "distortionless line." Heavlslde had used the word 

"Impedance" for the first time in 1884, and "reactance," v^lch he intro

duced from France in 1893. Since Heavlslde, the general transmission 

line model includes four distributed line parameters; namely, series 

resistance R, series Inductance L, shunt capacitance C, and shunt con

ductance 6 per unit length. In power transmission lines, the shunt con

ductance G is very small compared to the other three parameters and is 

usually neglected. 

Methods of transmission line simulation for transient analysis have 

been Introduced by many authors and they can be classified into three 
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main categories: miniature power system simulation, analog and hybrid 

computer simulation, and digital computer simulation. 

Miniature power system simulation: 

These simulators are commonly known as Transient Network Analyzers 

(TNAs) or Power Simulators. Electromagnetic transients have been 

studied with transient network analyzers since the late 1930s. Induc

tors wound on magnetic cores with specially selected characteristics 

were used to represent transmission line sections, transformers, source 

Impedances, etc. The generators were represented by ideal voltage 

sources behind appropriate reactances and were operated at the nominal 

power frequency. This leads to simulation of transient phenomena in 

real time, which often is a valuable asset. There are many problems 

which require that the simulation be in real time. The advantage to 

consider is the fact that in a real time simulation, the actual genera

tion and display of the transient is also In real time, which is gener

ally quite short, of the order of a few milliseconds. Thus, whenever a 

particular study requires a large number of repetitive runs, the actual 

run time on a network simulator for the entire set of studies is quite 

short. Another advantage of the physical model is that there are no 

computationally unstable solutions in a physical miniature model system. 

This problem is known to occur occasionally in computer simulations, 

especially with studies involving long run times. There are certain 

aspects of miniature model simulations which often present problems. 

Analog simulators are relatively inflexible. Setting up for a study on 

the simulator is a time consuming process. Also, the size of the 
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system that can be simulated for a study Is limited by the available 

equipment. Simulators capable of representing a system of reasonable 

size are fairly large installations. In addition to the problems 

associated with the size and inflexibility, there are certain technical 

limitations to all physical simulations such as the finite length 

representation of transmission lines. In spite of these disadvantages, 

the TNA technique was the dominant tool in transient analysis for many 

years. 

Analog and hybrid computer simulation: 

Analog and hybrid computers have been used for some specific 

transient simulation studies such as practical industry problems. The 

major advantage of analog computer simulation is that it does simulta

neous Integration of all the differential equations in a problem. On a 

digital computer, the differential equations must be processed sequen

tially (in a computational sense, and not necessarily in a structural 

sense). Even so, the analog computer simulations are rarely as fast as 

the network simulators. Recently, some very high speed analog simula

tions have been attempted, but they are not general purpose analog 

computer systems, rather they tend to be special hardwired simulation 

tools. The problem set-up time with analog and hybrid computers tends 

to be high. Also, algebraic equations, requiring loops without time 

lags, cannot be solved easily on analog computers. 

Digital computer simulation: 

For many years, digital computer methods have been employed for the 

calculation of transient phenomena on power system networks caused by 
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switching operations. The computational techniques used may be broadly 

classified into time-domain methods and frequency-domain methods. 

1. Time-domain methods 

a. Basic methods and transient programs Historically, digital 

computer programs for power transients began with techniques for studying 

wave propagation phenomena on transmission lines. The wave propagation 

problem was basically solved by two techniques known as the Bewelys 

lattice diagram [1,2] and Bergeron's graphical method [3]. 

The Bewelys Lattice diagram method uses reflection coefficients 

calculated for wave incident upon a discontinuity. Assuming a constant 

reflection coefficient, the incoming wave is broken into a reflected and 

a transmitted component. By keeping track of both components as they 

travel along the line, the voltage vs. time at any bus may be obtained. 

As the complexity of power systems grew, it was necessary to adapt the 

lattice method for solutions on digital computers using numerical tech

niques. The lattice method was implemented by, amongst others, Barthold 

and Carter [4], and McElroy and Porter [5], 

The Bergeron method is based on forward and backward traveling 

waves, but solved graphically. This method uses linear relationships 

between voltage and current. The Bergeron method was more suitable 

for computer programs as it considers the terminal constraints of the 

line. Many authors [6,7] have adopted this technique for transmission 

line problems, but assumed the line to be lossless. Both methods 

provided efficient pictorial techniques for the bookkeeping. In, spite 
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of the approximations involved in both methods (lossless lines with 

constant parameters), the solutions obtained illustrated the main 

structure of the phenomena. 

Consequently, Dommel [8], after approximating the derivative by 

first order backward difference, devised a constant resistance (/L/C) 

and a current source equivalent circuit for the transmission line at 

each end. Such equivalent circuits were decoupled. He also used the 

past history of the traveling wave to compute the values of voltage and 

current at each end. The program was essentially based on Bergeron's 

method, but used numerical techniques instead of graphical techniques. 

This program is known as the Electromagnetic Transient Program (EMTP), 

originally developed by Dommel [8] and nurtured at the Bonneville Power 

Admin.3Lration by Meyer and Liu [9]. 

Some other programs have also been in use for solving power system 

transient problems. The program METAP [10] uses a constant lumped 

parameter model for the transmission line, and similar models for the 

different equipment in the network. The connections between different 

equipment in the network are handled by connection equations satisfying 

Klrchhoff's circuit laws. Another such program Is TRANSO [11], which 

uses Bergeron's method to simulate transmission line transients. Each 

lumped component is approximated by a stub transmission line of appro

priate length and characteristic impedance. Both of these programs 

have been (and are being) used to solve practical electric utility 

problems. 
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There are a few programs with a more general applicability, which 

have seen some use in power system applications. The program ECAP [12] 

is used fairly wide as a circuit analysis tool. In many universities 

and research organizations, it is used for solving electronic circuit 

problems of small to moderate size. Although it could be used for 

power system transient analysis, many of its features—including its 

input and output facilities—are not convenient for practical power 

system use. Although the digital approach has not supplanted the 

traditional method of using miniature network models, it certainly has 

the capability to solve transient problems efficiently and economically. 

Many more options can now be examined because of the ready availability 

of the computer program than would have been possible just a few years 

ago. Certainly the trend seems to be towards an increasing role for 

digital simulation techniques in transient analysis. 

b. Approximating line losses Most of the transient programs 

are only efficient for distortionless or lossless lines. Yet propaga

tion on overhead transmission lines is far from distortionless and 

approximations for line losses had to be found. Such approximations 

considered the line losses to be represented by a constant resistor at 

each end of the line [13]. Some other researchers propose to divide 

the line into two sections and Include a resistance at both terminals 

and between the two sections [14]. With these approximations, the main 

line equations or section equations were solved as lossless lines. Most 
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of these programs were originally written for single-phase networks, and 

then extended to three-phase configurations. In the case of a single 

line above earth, the effect of line losses is to attenuate and retard a 

voltage wave traveling along the line. In more complicated three-phase 

systems, mutual coupling exists between phases and second order changes 

of voltage in each phase are functions of the voltages in other phases. 

Losses in such cases cannot be represented by simply attenuating and 

retarding the voltages in each phase. 

Matrix theory provided an approximate solution to the problem by 

representing the line by a number of modes of propagation, the voltages 

of which travel independently of one another and free of mutual effects. 

This approach is described by Wedepohl [15] and assumes that the line 

parameters are frequency independent. Also it is assumed that the line 

has symmetric configuration. 

c. Frequency dependence of line parameters Attempts have been 

made to approximate the frequency dependence of the line parameters. 

Methods have therefore been developed for modifying Bergeron's method to 

include the effect of frequency dependent parameters. Dommel and Meyer 

[14] suggested that more past history points of the traveling wave be 

weighted with an exponentially decaying weighting function. Mathemati

cally, this is done with a convolution integral. This procedure produced 

an approximation for an attenuation and a distortion of the pulse as it 

travels from one end of the line to the other. 

Carroll and Nozari [16] suggested a method to obtain the character

istic Impedance and propagation coefficient of a single phase line in 
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the frequency domain. Then applying the inverse Fourier integral, they 

obtained a time function for the characteristic impedance and the propa

gation constant to be used in a convolution integral with Bergeron's 

method. The method was extended to include the three-phase transmission 

line problem, but with equal mutual coupling between phases. In this 

method, the boundary conditions are assumed to be known at the line 

terminals. 

As a summary, most transient analysis time domain computer programs 

are based on Bergeron's method. The problem was solved first for single 

phase and lossless lines. Modifications have been made to approximate 

losses and frequency dependent parameters. However, the time domain 

solution does not allow a direct method to account for the actual 

variation of the line parameters with frequency. The three-phase trans

mission line is assumed to have equal mutual coupling between phases. 

The difficulty in handling the boundary condition restricts the tech

nique to special problems. For example, Carroll and Nozari [16] applied 

the technique to study a fault on an open end transmission line and a 

surge voltage traveling on a HVDC transmission line. Also, the time 

domain solution requires large amounts of computer storage and computa

tion time. Theoretically, time varying parameters can be handled by the 

time domain solution. 

2. Frequency domain methods 

For any power transmission line, only the shunt capacitance is 

constant, whereas the resistance and the Inductance are functions of the 

frequency. The transmission line equations with frequency dependent 



www.manaraa.com

14 

parameters are still linear, which means that superposition technique 

still applies. Laplace and Fourier transformations therefore provide a 

rigorous solution to the problem. Conceptually, the time varying volt

ages and currents are transformed into the frequency domain to display 

their frequency spectrum. Then for any frequency, the appropriate 

line parameters are used and the response can be found. Finally, all 

such incremental responses are added by means of inverse Fourier or 

Laplace transformations back to the time domain, giving the total 

response. 

This idea of frequency-domain solution was applied to transient 

problems in power systems in the mid 1970s. Jones and Aggarwal [17] 

developed a digital simulation of a transmission line in the complex 

frequency domain. In this method, the transmission line was considered 

ideally transposed with frequency dependent parameters. The faulted 

transmission line was treated as a network of cascaded sections. Each 

section was represented by a two-port transfer matrix. For example, a 

transfer matrix represented the line section up to the point of fault, 

another transfer matrix represented the fault discontinuity, and a third 

transfer matrix represented the line section between the fault and the 

receiving end busbars. Ths multiplication of these matrices gave the 

relationships between the currents and the voltages at either end of the 

line in the frequency domain. The inverse Fourier transform was used to 

determine the corresponding time variation of the voltage and current of 

interest. 



www.manaraa.com

15 

Triezenberg [18] developed a technique for simulating the trans

mission line based on the finite Fourier transform. In this technique, 

a transformation of the spatial independent variable x (distance along 

the line) is used. The final step of this technique uses state variable 

methods and four transfer functions to approximate the relations between 

the currents and voltages at both ends of the line. The four transfer 

functions were characterized by eleven poles in the complex frequency 

domain. This technique is similar to cascaded TT or T sections of the 

transmission line. This technique was applied to special cases because 

of the difficulty in obtaining the boundary conditions at the fault loca

tion or at the sending end of the line. Also, this technique assumed 

the line parameters to be constant and independent of frequency. 

Although the frequency domain method offers a solution for the 

frequency dependence of the line parameters, there is a difficulty in 

handling the time varying parameters. In this technique, it has been 

assumed that the line has equal mutual coupling between phases. Also it 

has been common to assume zero fault resistance at the fault location and 

a transmission line connected to an infinite bus. Some of these assump

tions are invalid for certain studies. 

B. Synchronous Generator Model 

In order to make any review of the literature pertaining to synchro

nous machines sensible, it is necessary to make some preliminary comments 

about the machine per se. A three-phase synchronous machine has three 

stator coils that are as physically alike as is feasible within the 

limits of manufacturing practice. These coils are oriented at 120° to one 
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another in space and are usually designated as a, b, c. The machine also 

has a rotor that contains two shorted coils (damper windings) and one 

coil excited from a DC voltage source (field winding). The self induc

tances of the stator coils and the mutual inductances between the stator 

and rotor coils are all functions of the angular displacement of the 

rotor. The coil currents and the angular position of the rotor are the 

dependent variables in the machine differential equations. 

The machine equations are easy to formulate in these terms (this 

formulation is said to be based on a-b-c coordinates), but the co

efficients are functions of angular displacement, and the equations per se 

are mathematically refractory. As a consequence, a variety of trans

formations have been developed to produce a more tractable set of 

equations. The most important of these is the Park transformation [19] in 

which the coordinates are designated (0-d-q). This transformation pro

duces a set of equations with constant coefficients. A second trans

formation called the (0-1-2) transformation due to Fortescue [20] is also 

available to simplify the analysis of unbalanced three-phase circuits. 

This transformation does not pertain to the machine per se, but it can be 

used in conjunction with the (O-d-q) transformation to solve machine 

problems. 

Generally, the Park transform cannot be used in fault studies with

out going back to the (a-b-c) components. With the advent of modern 

computers, numerical methods have been used for solving nonlinear 

differential equations. In such cases, the direct three-phase (a-b-c) 

nonlinear differential equations could be used for the study of 
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synchronous machine performance during fault transients. Subramaniam 

and Malik [21] devised a fourth order Runge-Kutta method to solve non

linear machine equations in the (a-b-c) components. This method re

quires considerable computational effort and its accuracy depends on the 

step size. The difficulty in handling boundary conditions restricts the 

method to the solution of special problems. Such special problems are 

fault transient analysis of unloaded machines or machine connected to 

an infinite bus (constant voltage with zero impedance). 

As indicated in the last section (A), the frequency domain solution 

has been used to account correctly for the distributed nature and the 

frequency variation of the line parameters. Therefore, it is desirable 

to simulate the synchronous machines in the frequency domain. The works 

of Ku [19] and Adkins [22] are typical and pertinent examples. Both used 

the Park transform in describing the transient behavior of the synchro

nous machine, Ku analyzed a mechanically unloaded synchronous machine 

transient due to a fault. Adkins described the transient behavior of a 

synchronous machine connected to an infinite bus by assuming constant 

rotor speed and equal mutual coupling between the rotor and the stator. 

He indicated that the assumption of constant speed gives acceptable 

accuracy during the first few cycles following the fault, and the rotor 

swing may be safely ignored. 

As a summary, most of transient analysis of synchronous machines 

assumed known boundary conditions at the machine terminals. For 

example, a synchronous machine connected to an infinite bus or unloaded 

machine were common assumptions. The analysis of a fault transient on a 
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transmission line necessarily requires recognition of the fact that the 

line is connected to a machine. Subsequent reference is made to a 

"simple" machine model. Basically, this consists of representing the 

machine by a Thevenin's equivalent which establishes sending-end 

boundary conditions. While this is mathematically convenient, it cannot 

be rigorously justified in transient analysis; the line equations are 

formulated in (a-b-c) coordinates, and the machine can only be repre

sented by a Thevenin equivalent in (0-d-q) coordinates. 

One of the most important elements in this thesis is the development 

of a set of transformations that make it possible to couple the machine 

equations with the line equations. The only ad hoc assumption that must 

then be invoked is based upon Adkins' [22] assurance that the rotor 

swing during the first few cycles is negligibly small. 
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III. TRANSIENT AND STEADY-STATE ANALYSIS OF TRANSMISSION LINES 

The transmission line possesses a certain inductance, capacitance, 

and resistance, so that these quantities are truly distributed over tens 

or hundreds of miles. The main purpose of analysis is to determine 

the magnitude of current and voltage at any point on the transmission 

line, and to transfer the greatest amount of usable power to the load. 

The analysis is general for short, medium, and long transmission lines. 

A. Formulation of Three-Phase Transmission Line Equations 

1. Voltage equations 

Figure 3.1 represents a section of a three-phase transmission line 

with length Ax. The ground return of an overhead conductor is called 

Carson's line [23] which is a single conductor dd' with length Ax 

and parallel to the ground. 

la 

a . ^ /VW^ ATYl , a" 

K  
K 

^ nnm 

i R' 

c. —^ AAA mnn c-

^ Ax 

_ ^d A 
ww  ̂ — mm. 

^d " * ̂b * ̂c^ 

Figure 3.1. A section of a three-phase transmission 
line with ground return 
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The voltage equations of the three-phase transmission line are: 

- h  = ^a la(X't) + ̂ aa W + ̂ ab J Ï  S) 

+  K c  i t  l c ( X ' t )  +  

" "Sx ^a 9t" ^ i^(x,t) 

+  K c  W  l c ( * ' t )  +  K d  J £  i d ( X ' t )  

-  4  ̂c ( = ' t )  =  K a  i t  i a ( X ' C )  +  ^ c b  ̂  

+ Kc IF + ^Cd it 

- A = ^da -h ia(X't) + ̂ db JÏ + ̂ dc W 

^d ^dd 3t 

The above equation can be written in a matrix form as 

V(x.t)" 

J_ 
V^(x,t) 

dx 
v^(x,t) 

Vj(x,t) 

R' 

a; 

\(x,t) 

i^(x,t) 

ij,(x.t) 

ij(x,t) 

\'a Hb , H'd" 

1 

r
t
 •
 

Ha Hb Kc ,' Hd g 
i^,(x,t) 

H'a ^cb H'c I 
-i •» >4 

Hd 
at ij,(x,t) 

(3.1) 

_Ha Hb Hd_ ijCx.t) 



www.manaraa.com

21 

or 

" ax -abcd(*'t) 5abcd ' -abcd^*'^^ -abed 9t iabcd^^'^) 

Since v^(x,t) = 0, then equation (3.1) is reduced as 

at 

\(x.t)- "R 
a 

"i^(x,t)" 
\a Sb Sc" 

"i^(x,t)" 

V^(x,t) s i^(x,t) + 
Sa Sb Sc 

9 

3t 
i^(x,t) 

V^(x,t) R 
c 

ig(x,C) 
\a Sb Sc_ 

ij,(x,t) 

or 

- -h ïabc'"'" " ïabc'X't) + Lbc ̂  iabc'"'" 

By dropping the abc 

- Y(x,t) = R i(x,t) + L i(x,t) (3.2) 

In many physical transmission lines, wires are added above the phase 

wires to "shield" the line against direct lightning strokes. These ground 

wires have an effect on the line impedance. The same previous steps can 

be followed in obtaining the voltage equation in case of lines with one or 

more ground wires, and the same final result as equation (3.2) can be 

obtained. 

2. Current equations 

The nodal analysis can be applied to find the current at each phase 

as 
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- f- i = C 
9x a ag 3t a 

v^(x,t) + v^(x,t) + ^ [Vg(x,t) - v^(x,t)] 
a a 

+ Cac [v^Cx.t) - v^(x,t)I 

- k h  = S a  &  - v^(x . t ) J  +  ^  v^(x, t )  +  G^v ^ ( x . t )  

+ Sc SÏ - v^(x,t)] 

3t *0 = Sa & [^^(x.t) - v^(x,t)] + ^ [v^(x,t) - v^(x,t)] 

+ Sg 3ÏÏ Vc(X't) + S Vc(X't) 

\ 
G X 
a 

> _ 
;c 
^ ag < 

-c 
N eg 

^ ^ ^ 

Figure 3.2. Capacitances and conductances In 
three-phase transmission line 

The above equations can be written in a matrix form as 
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"i^(x,t)" \ "v^Cx.t)" 

3 

9x 
i^U.t) 

= 
Gb Vy(X,t) 

Gc_ V^Cx.t)^ 

^^ag+Cab+Cac) "^ab 
-C 

ac 
"v^(x,t)" 

+ -Cba (Cbg+Cba+ Cbc) "Sc 

S 

at 
V^(x,t) 

-Cca "^cb (Ccg+Ccb + Cca)_ 

1 
u

 
X
 o
 

^
.
 

or 

I ?  i a b c °  5 a b c  '  ' a b c ^ ' «  +  < = a b < =  '  H  ' a b c < * ' "  

By dropping the abc in the above equation as 

^ i(x,t) = G • v(x,t) + Ç • v(x,t) (3.3) 
3x ' — — — 3t — 

By differentiating equations (3.2) and (3.3) with respect to x, and 

3 3 
substituting the values of i and ̂  v the results are 

v(x,t) = R ̂  i(x,t) + & i(x,t) 
3x 

2 -

R [-G v(x,t) - C v(x,t) ] 

+ L 3F [-G Y(x,t) - Ç ̂  v(x,t)] 

^ 2 9 • 
—y v(x,t) = -m R G v(x,t) - R Ç v(x,t) 

Bx 

- L G v(x,t) - L C v(x,t) 
— — dt — — — — 
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or 

3^ , . X  _ _ , _ 3 
•y v(x,t) = R G v(x,t) + R Ç ̂  v(x,t) 

9x 

2 
+ & G Y(X't) + & Ç %^2 Y(x,t) 

• oX 

In any power transmission line, the value of G is insignificant 

(10 ^ - lots), so it can be neglected and the above equations can be 

written as 

2 2 
^ 2 Y(x*t) = R 2 v(x,t) + L C v(x,t) (3.4) 
9x 9t 

Also, 

2 
• TT ï(X't) = 5 A Y(X't) Y(X't) 

dX 

= G [-R i(x,t) - L ̂  i(x,t)] 

+ 9 1-5 It ï(X't) - & & l(X'C)] 

or 

g 2 g 
—J i(x,t) = G R i(x,t) + Ç R i(x,t) 

a 8^ 
+ G i(x,t) + Ç L —2 l(x,C) 

91 

By ignoring the parameter G 

2 2 
Ar i(x,C) = C R i(x,t) + C L i(x,t) C3.5) 
3x2 - - - 3t - - - at^ -
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Equations (3.4) and (3.5) represent the partial differential equations 

of any three-phase transmission line where 

L is a (3x3) inductance matrix in Henry per unit distance. 

C is a (3x3) capacitance matrix in Farad per unit distance. 

R is a (3x3) resistance matrix in Ohm per unit distance. 

G is a (3x3) conductance matrix in Siemens per unit distance. 

B. Calculation of the Line Parameters 

A transmission line is characterized by four distributed line 

parameters, namely, R, L, C, and G per unit length. Usually G has a very 

small value (10 ̂  - 10 U) and it is neglected. The inductance matrix L 

in equations (3.4) and (3.5) can be obtained by using the equations in 

reference [23] for any configuration of the line. The general expres

sions of the series impedance of the transmission line with ground wire 

are 

= (R^ + Rj) + j (2nf) k In —^ ohm/unit length (3.6) 
si 

D 

Z.. = R, + j (2iTf) k In ohm/unit length (3.7) 
13 d "ij 

where 

Z^^ = aelf Impedance of conductor i in ohm/unit length and the 

diagonal terms of the Impedance matrix. 

Z^j = off diagonal terms of the impedance matrix in ohm/unit length. 

Rj^ = derles line resistance in ohm/unit length 



www.manaraa.com

26 

= self geometric mean radius of conductor i in ft. and for 

cylindrical conductor = .779 r ft. 

= distance between conductor i and conductor j in ft. 

f = frequency in Hz. 

K = constant which is chosen according to the user's units and its 

values in reference [23]. 

= earth resistance = 1.588 x 10 ^ f Ohm/mi. 

= 9.869 X 10 ̂  f Ohm/km. 

is a function derived in reference [23] and it is equal to 

2160 

p = Earth resistivity 

Equations (3.6) and (3.7) show that the impedance of the line is a 

function of frequency. The numerical example in Appendix A is taken to 

find the impedance matrix as in equations (3.6) and (3.7) at different 

frequencies by using the computer. The results are shown in Figures 3.3 

and 3.4. Figure 3.3 shows that the real part of the elements (1,1) and 

(1,2) of the impedance matrix increases rapidly with frequency. Figure 

4.4 shows that the imaginary part of the elements (1,1) and (1,2) 

decrease with frequency, but the variation after 400 Hz. is insignifi

cant. 

Calculation of the admittance matrix of the transmission line is 

also discussed in reference [23]. The capacitance of any three-phase 

transmission line with ground wires can be calculated by using the 

equation V = P q where 
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P = Potential coefficient matrix in Farad ^ unit length 

q = Charge matrix in Coulomb per unit length 

V = Voltage to neutral matrix 

By using the subscript abc to denote the phase conductors, and the 

subscript n to denote the ground wire, the voltage equations in matrix 

form are: 

\bc' ^1' ̂ 2 
1 

^abc 

7„ . 

1 1 — 
— 
m
 

1 
Ai y 

(3.8) 

By knowing = 0, equation (3.8) can be reduced to three equations to 

present the three-phase voltage by eliminating the fourth row and column. 

The result is 

-1 

-abc " ̂-1 ~ -2 -4 -3^ Sabc 

ss p q 
-abc -abc 

-1 
ïabc ° - S2 Ïa' S3 

By dropping the subscript abc, then 

V = P g (3.9) 

P is a (3x3) matrix and it is equal to the inverse of the capacitance 

matrix. The elements of P are 

r H , \  , H  

ii Zire ̂ (ï^) = 11*185 In MF"^ • mi (3.10) 
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RESISTANCE VARIATION 
real part of Z(l,l) ® 
real part of Z(.l,2) 

ni 

0.00 32.00 UO.OO 
(xlO* ) 

Figure 3.3. Resistance variation with frequency 
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INOUCTANCE VARIATION 
self inductance of Z(l,l) 

mutual inductance of Z(l,2) 
go 

n" 

u_ 

U8.00 8.00 0.00 32.00 

Figure 3.4. Inductance variation with frequency 
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= 11.185 In (3.11) 

where 

e GMD between conductors and their images 

= GMD between conductors 

and 

r^ = radius of the conductor 

By finding the P matrix, then the capacitance matrix can be obtained froin 

C = P~^. 

The admittance matrix of the transmission line Y = jwC and it is 

(3x3) matrix for three-phase line. The computer program in Appendix B 

is used to find the admittance matrix from the line configuration. The 

calculations of impedance and admittance matrices are based on distri

buted line parameters. 

Any practical transmission line cannot be lossless and completely 

transposed, and will usually be terminated at both ends as shown in 

figure 3.5. Most of the existing fault transient programs neglect the 

transmission line losses to simplify the solution of the line equations. 

C. Transmission Line Losses 

Generating 

unit 

Figure 3.5. Practical transmission system 
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Some of these programs have been modified to include the transmission 

line resistance in their line model by different ways [24]. The analyses 

of lossless lines have been discussed in many references as [25,26], 

which are based on Bewley Lattice diagram. 

A sudden occurrence of a fault on a power transmission line causes 

a propagation of traveling waves toward both ends of the transmission 

line. When the traveling waves reach the ends of the transmission line, 

they are reflected back to the faulted point. The line resistance 

and the other losses tend to attenuate and distort the waveforms of 

voltage and current. Therefore, the waveforms of the lossless line can

not produce correct estimates of the magnitude of voltages and currents. 

In the transmission of power, there are many other losses which can 

be studied. The high electric field intensity surrounding high-voltage 

power lines accounts for an additional energy loss in the transmission 

line. The high voltage gradient at the surface of a wire sometimes 

accelerates electrons in the air sufficiently to ionize air molecules by 

collision. If the voltage gradient at the wire exceeds a certain 

critical value, the process of ionization becomes cumulative and results 

in appreciable loss of energy. The ionization is characterized by a 

faint glow surrounding the wire and is called corona. The critical 

'X 
voltage depends on wire size, spacing, and on atmospheric conditions. 

Corona is most likely to occur when the diameter of the conductor is 

small compared to the distance between wires. High voltage, small 

wires, and close spacing contribute to a high voltage gradient which may 

Introduce corona. Damp weather increases the loss from corona, and a 
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rough or dirty surface on a conductor increases the probability of the 

occurrence of corona. Empirical methods for the calculation of corona 

loss are available in many references [27] and it is usually small. 

Another loss occurring on transmission lines is caused by the 

leakage of current at the insulators which support the lines at the 

towers. Since leakage at insulators of overhead lines is negligible and 

corona loss is usually small, also the conductance between conductors of 

overhead lines is assumed to be zero. 

In a transmission line there is a nonuniformity of current distri

bution in addition to that caused by skin effect. In a two-wire line, 

slightly fewer lines of flux link the elements nearest each other on 

opposite sides of the line than link the elements farther apart. There

fore, elements in the near sides have lower inductance than elements on 

the far sides. The result is a higher current density in the element of 

adjacent conductors nearest each other than in the elements farther apart. 

The effective resistance is increased by the nonuniformity of current 

distribution. The phenomenon is known as proximity effect. The increase 

in resistance depends on the frequency, distance between conductors, 

conductor size, and permeability. Proximity effect is present for three-

phase as well as single-phase circuits. Even at high frequencies, if the 

ratio of spacing between wires to the radius of the wires of a two-wire 

line is greater than 15 to 1, the increase of resistance due to proximity 

effect is only 1% as discussed in reference [28]. Usually the proximity 

effect is not introducing error in determining the resistance and it is 

neglected. 
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Skin effect phonemenon: 

A uniform distribution of current throughout the cross section of a 

conductor exists only for direct current. As the frequency of alternat

ing current increases, the nonuniformity of distribution becomes more 

pronounced. An increase in frequency causes more current to be concen

trated near the surface of the conductor and less in the interior. This 

phenomen is called skin effect. 

Skin effect resistance ratio: 

The internal Impedance of a conductor is composed of resistance and 

inductive reactance. The real part of the complex impedance is the 

effective resistance. The method of calculating the effective resis

tance of the line is discussed in many references [23,28] as 

R = -aï ber(mr? • bel'tmr) - length 

^ (bei^(mr)) + ber^Cmr)) 

The d-c resistance R for a round conductor is 
o 

= p^/A = p^/irr^ 

The ratio of effective resistance to d-c resistance is 

r/r = = SH. ber(mr) » bel' (mr) - bei(mr) » ber^ (mr) 12) 

° ^ ^ (bei^(mr))^ + (ber^(mr))^ 

mr = » .0636 
P % 

where 

• d-c resistance in ohm/unit length 
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r = radius of the conductor 

= relative permeability of the wire 

The functions ber, bel are complex functions, and ber", bel' are their 

derivatives as 

bertBT) + 
2^ . 4^ 2%. 4%. 6%. 8^ 

bel(mr) . iKl! .-iSElL^ + 

2 . 4 . 6 

ber"(mr) = ber(mr) ^ ber(mr) 

b G i " b e i ( m r )  =  ̂  ̂  b e l ( m r )  

The variation of with the frequency is plotted in reference [23]. 

This variation cannot be neglected particularly in large conductors 

because of the skin effect. 

Skin-effect inductance ratio: 

The imaginary component of the internal impedance of a conductor is 

the inductive reactance due to internal flux linkages. The expression 

for internal inductive reactance is in reference [22] as 

ml, - bel(mr) • bel'(mr)H-ber(mr) . ber'(mr) length 

'• (beKinr))'̂  + (ber-Cmr))'' 

If L. is the internal inductance at frequencies so low as is 
lo 

equal to then the ratio of Internal Inductance of a wire at any 

frequency to Internal Inductance Is 
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io 

Qj _ A. fbeKmr) « bei/(mr) + ber(mr) 

^ 1^ (bei'(mr))^+(ber 

(mr) * ber^(mr)"[ 

'(mr))^ J 

(3.13) 

That ratio approaches unity as the frequency approaches zero. As the 

frequency Increases, the ratio becomes smaller, for skin effect causes 

the current to crowd toward the surface of the wire and thereby reduces 

the number of internal flux linkages. Tabulated values of skin effect 

inductance ratio are available in many references [28]. Therefore, the 

self and mutual inductances can be obtained by taking the skin effect 

into consideration as 

a Dy e"l. . 
^—jp-*' j - 1] Henry/unit length (3.14) Lg = K [In 

L = K [In 
m 

2 D.. e"L 

(— j Henry/unit length (3.15) 

where 

L = self inductance 
s 

L = mutual inductance 
m 

= distance between conductor i and j 

GMD = geometric mean distance 

K = constant depends on the units used 

D^i = self geometric mean distance of conductor 1 

The skin effect inductance ratio is less important than the skin effect 

resistance ratio In the total impedance of the line. 
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The calculation of the Impedance matrix of a three-phase trans

mission line Is obtained by using two methods. The first method Is based 

on Carson's line by using equations (3.6) and (3.7) and the second method 

uses equations (3.12), (3.14), and (3.15) which are derived from 

Maxwell's equations. The waveforms of voltage and current were obtained 

by using both methods. 
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IV. GENERAL EQUATIONS AND SOLUTION FOR FAULTED POWER 
TRANSMISSION SYSTEMS 

As previously discussed, the line is untransposed with frequency 

dependent parameters. Based on this model, the solution of voltage and 

current can be obtained by solving the partial differential equations of 

the transmission line, i.e., equations (3.2) and (3.3). 

si 

®1 »<-

K-

rl 

xl 

r2 

>l< x2 

s2 

-X Sg 

Figure 4.1. Single line diagram of faulted transmission systems 

Figure 4.1 defines the voltages at the sending end, receiving end, 

and the fault location. These are designated v^^, v^g, and v^ respec

tively. The fault is located at distance xl from the sending end, and at 

distance x2 from the receiving end. Therefore, the total length of the 

line a Is equal to (xl + x2). 

By applying Laplace transform with zero initial conditions to 

equations (3.2) and (3.3), Rhe following are obtained: 

V(x,s) = R I(x,s) + sL I(x,s) 

Z(s) I(x,s) (4.1) 
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- ̂  I(x,s) = sC V(x,s) 

= YCs) V(x,s) C4.2) 

where 

Z(s) = R + sL 

Y(s) = s Ç 

s = a + 303 

The second derivatives of equations (4.1) and (4.2) are 

,2 , 
—J V(x,s) = -Z(s) ̂  I(x,s) 
dx 

= Z(s) Y(s) V(x,s) 

= A V(x,s) (4.3) 

and 

, 2  
2 I(x,s) = -Y(s) V(x,s) 

dx 

= Y(s) Z(s) I(x,s) 

= I(x,s) (4.4) 

where 

A = Z(s) Y(s) 

A*^ - Y(s) Z(s) 

Since Z(s) and Y(s) are symmetrical matrices, then A will be a symmetrical 

matrix if and only if Z and Y commute. 

Equations (4.3) and (4.4) are coupled. They can be decoupled by 

using a modal-transformation [15], In the case of an untransposed line, 
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the eigenvalues and eigenvectors vary with frequency, and the modal 

transformation matrix has to be calculated at each frequency. 

The matrix solution is V,ased on a linear transformation of voltage 

and current, so the second-order differential relationships will involve 

diagonal matrices only. Mutual effects can be eliminated by using the 

following method. 

If S is the voltage-transformation matrix, and Q is the current-

transformation matrix, then the modal voltage and the modal current can 

be defined as 

V"*" = S"^ V (4.5) 

l"*" = Q~^ I (4.6) 

As S and Q matrices are neither orthogonal nor unitary, then neither S S*" 

nor Q Q*" is diagonal. But, since S and Q are mutually orthogonal, then 

the products 

9^ S = Q = D (4.7) 

are diagonal. The transformed impedance and admittance matrices are also 

diagonal, i.e., 

S"^ Z Q = Dg (4.8) 

and 

Q"^ Y S - D (4.9) 
- T -y 

The product of the transformed impedance and admittance matrices commute. 

2 2 
This product is the propagation matrix F , i.e., D^Dy = « F . 
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If S is chosen as the matrix of the eigenvectors of matrix A, and Q 

is the matrix of the eigenvectors of matrix A^, then the matrix product 

S can be chosen as a diagonal matrix D or as an identity matrix [24], 

or 

Q = (.4.10) 

By diagonalizing the matrices A and A^ in equations (4.3), (4.4) and 

transforming the phase voltage and current into the modal voltage and 

current, the following relations are obtained: 

2 
^ V'''(x,s) = S"^ A S V"^(x,s) (4.11) 

and 

dx^ " 

2 
^ I^(x,s) = Q~^ A^ Q I^(x,s) (4.12) 

dx^ ~ 

The products of S~^ A S and A^ Q are diagonal matrices where the 

diagonal elements are the eigenvalues. These eigenvalues are complex and 

vary with frequency, i.e., 

1̂.1 - *1.1 + j Gl.i • 1= 

where 

^ = propagation constant 

a, . = attenuation constant in nepers per unit length 
1,1 

3i 1 » phase constant in radians per unit length 

Figures 4.2 and 4.3 show the variation of a. , and g. . with frequency. 
1,1 1*1 
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VARIATION or ATTEN, 
ATTEN. CONST. (Il 
ATTEN. CONST. (21 
ATTEN. CONST. (91 

or 

0.1 
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o 
d-" 

4.00 
Ffllol?. IN H'f 

0,00 16.00 20.00 
(XIo' I 

Figure 4.2. Variation of attenuation constant 
in nepers/unit length 
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VARIATION OF PHASE 
PHASE CONST. (1) 
PHASE CONST. (SI 
PHASE CONST. (31 

o~ 

UJ 
tn 

a_: 

0.00 U.OO 
FRIC»? IN H 

16.00 20.00 
(XlO* I 

Figure 4.3. Variation of phase constant in 
radians/unit length 
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Equations (4.11) and (4.12) can be written as 

2 
~ V'^(x,s) = D V'^(x,s) = V^(x,s) C4.13) 
dx ^ 

2 
I+(x,s) = D D l"^(x,s) = I+(x,8) (4.14) 

dx ^ ~ 

Equations (4.13) and (4.14) are fully decoupled and the solution of 

these equations can be obtained as 

V^(x,s) = A1 exp(-r x) + B1 exp(r x) (4.15) 

I^(x,s) = Ç1 exp(-r x) + D1 exp(r x) (4.16) 

Where Al, Bl, CI, and Dl are determined by the boundary conditions. 

Refer to Figure 4.1, at x = 0 

V  ~  Y r  1 = 1  ,  c o n s e q u e n t l y  

V* = Al + Bl (4.17) 

îrl = Ç1 + Dl (4.18) 

Also at X = xl 

f = ïh and I"*" = Igi , then 

= M exp(-r xl) + Bl expCr xl) (4.19) 

= CI exp(-r xl) + Dl exp(r xl) (4.20) 

By differentiating equations (4.15) and (4.16) with respect to x. 
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and 

v"^(x,s) = -r M expC-Tx) + T B1 exp(rx) 

= -D^ I (x,s) (4.21) 

^ I^(x,s) =-£01 exp(-Fx) + F Dl exp(r x) 

= -Dy V'^(x,s) (4.22) 

At X=0, equations (4.21) and (4.22) became 

V ^ = — r AI + r BI = r (—AI + BI) 
dx 

- îrl (4.23) 

and 

éïn =-î çi + I 01 = î(-çi + Dl) 

= -D v"*" (4.24) 
-y -r 

Equations (4.23) and (4.24) become 

irl - 5z"^ r (AI - Bl) (4.25) 

ïr " Sy^ î (Ç1 - Dl) (4.26) 

Finally, equations (4.19), (4.20), (4.25), and (4.26) can be combined to 

obtain Al, BI, CI and Dl as 

Al - i irl" + Ŷ I (4.27) 
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51 =1 lïr^ - 2^ ïtl^I (A.28) 

Ç1 [r-^ Dy V++ + ] (4.29) 

and 

21 - i [:,! - [ 2y Yr ] (4.30) 

By substituting Al, Bl, Cl, and D1 in equations (4.26) through (4.30) the 

voltage and current equations at the sending end become 

ïj • I îri + Ï* 1 exp(-rxl) + 

i  Sz Irl +Yr 1 exp(rxl) 

= -J r ^ [exp(-rxl) -exp(rxl)] + 

Y [exp(-rxl) + exp(rxl)] 

or 

ïsl'' • Scl ïr r'2, 2sl ̂ rx'' <"-3» 

where 

Del ° cosh (Yj^ 1 xl) = Y [exp(-Y^ ^ xl) + exp(Y^ ̂  xl)] 

1,1 

Dgl " sinh (y^ ̂  xl) = j [exp(-Y^ ^ xl) - exp(Y^ ̂  xl)] 

1,1 

Both Dgl are diagonal matrices. 

Also, 
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îsl - 1 ?y ïr + irl"] 

+ i [-[ g, V+ + I,]"] e%p(r xl) 

=» Y [exp(-rxl) + exp(rxl)] I^j*" 

•f r ^ D [expC-Fxl) - exp(rxl)] 

or 

isl"" = 5cl îrl + Sy Ssl (4-32) 

Since D^, and In equations (4.31) and (4.32) are diagonal matrices, 

then 

r D = D r 
—. —y —y — 

and 

(R~^ D̂ ) (D„ R"^) = (r"i S~^ z Q) (Q"^ Y S R"^) 

«= r (s"̂  z Y S) r 

»  r ( s " ^  A  S )  

= r r ̂  r 

= U (identity matrix) 

So, if D, = zj", then r"^ = (Z^)"^ 
— —z —o —y — —o 

Equations (4.31) and (4.32) become 

" Scl ï> So" 2»1 in" (4-33) 
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Cl = 2,1 irt + Wo")"' 2sl Ir 

Equations (4.5) and (4.6) are used to transfer the modal variables back 

to the phase variables. The sequence of transformations begins with 

V, = S D^. S"^ V_ + S Z+D 1 Q~^ I , 
—si — —cl — —r — —o —si — —rl 

but s z+ = s r"^ z q 

- s(s-i z Q) r-i 

= z Q r 

or 

S = S(S~^ Z Q) r"^ 

= (s r"^ s"^ z) Q 

= ëo 9 

where Z^ = § s"^ Z 

then, 

and 

ïsl ° ®cl ïr + <5„ 2 5,1 g-4 1^1 (4.35) 

isl • 2 5cl S'"- irl + 5sl ïr 

Since Z and D . are diagonal matrices, then 
—O —81 

<>•' ?3i ' 2.1 (O"' 

and 
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(ẑ )~̂  s"̂  = (r~̂  s"̂  z Q)"i s"̂  

= (s r~^ s"^ z Q)"^ 

= q"̂  (s r s~̂  z)"̂  

Then 

Î81 = (9 2cl 2"̂ ) îrl + (9 5si S"'- Yr 
(4.36) 

Equations (4.35) and (4.36) are used to find the phase voltage and current 

at the sending-end in the s-domaln. 

The receiving-end equations are based on the boundary conditions at 

the fault location and at the receiving-end. 

From Figure 4.1, at x = 0 

Y = Yr ' i = ir2 

and at x = x2 

Y = Ys2 ' i=is2 

The same procedure used to derive (4.35) and (4.36) produces the receiv

ing-end equations 

ÏS2 - '2 ?c2 5"^) Yr + (Z. S EB2 ir2 (4.37) 

ÏS2 - <2 Se2 2-^) ir2 + <9 5^2 2'^ Yr (4.38) 

where 
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°c2, , - (Yi.l 

° (Yi,i x2) 

The sending-end voltages and currents or the receiving-end voltages 

and currents can be obtained by using the above equations if V^, and 

1^2 are known or if the boundary condition at the fault location is 

specified. This boundary condition depends on the type of fault. There 

are four types of faults: three-phase fault, single-line-to-ground 

fault, line-to-line fault, and double-line-to-ground fault. Methods of 

finding the boundary condition at the fault location for each type of 

fault will be discussed in the next chapter. 
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V. BOUNDARY CONDITIONS AND SIMULATION OF 
FAULTED POWER SYSTEMS 

In order to apply the equations developed In the previous chapter, 

it is necessary to develop a general technique for modeling a fault, and 

to specify the boundary conditions at the ends of the line. Once these 

factors have been dealt with, simulation of the line transients is 

largely a matter of developing a computer program and applying it. A 

general fault model is developed in this chapter, boundary conditions are 

specified at the terminals, and the fault transients on a hypothetical 

transmission line are simulated. 

A. The General Power System Simulation 

A power system consists of three primary components: The generating 

system, the transmission line, and the load. Chapter III was concerned 

with modeling the transmission line in detail. For the purposes of fault 

transient analysis, all that really needs to be done with either the 

generator or the load is to characterize them sufficiently well to impose 

realistic boundary conditions upon the line differential equations. In 

this chapter, conventional models for each are used. It is also 

necessary to simulate a line fault. Simulations for the load, the trans

former, the generator, and the fault are described in the next two 

subsections. 

1. Load, generator, and transformer simulations 

The load is connected at the receiving-end of the line. This load 

is represented by a constant Impedance (R^, L^). 
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The transformer and the generator are connected to the sending 

end. The transformer is represented by a series impedance (R^^, L^^). 

The synchronous generator is represented by the Thevenin equivalent 

(constant voltage behind a transient impedance). One of the most 

important conclusions of this thesis is that this generator model is 

inaccurate in transient analysis particularly when the fault is near the 

generator. This model is in fact widely used, and is only involved here 

for comparative purposes. The next two chapters develop a more accurate 

technique for dealing with the generator, and subsequent work compares 

the results obtained by two processes. 

2. Fault simulation 

Fault initiation is simulated in the following manner: 

a. The voltage v^ at the fault location is calculated just prior 

to the instant of fault inception. 

b. Define a fault voltage (v^) 

Vg = -u(t) v^ 

where the fault i-s stipulated to occur at time t=0. 

c. The fault per se is simulated as a resistance in series with an 

inductance. 

d. Construct the circuit shown in Figure 5.1 at the fault 

location. 

For t < 0, i^ = 0. For t > 0, the state of the line can be deduced 

by using superposition, i.e., two separate calculations (steady-state 

and transient) are performed. The steady-state and transient solutions 
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Figure 5.1. Fault simulation 

are discussed in the next section. The superposition of the steady-

state response and the transient response gives the total response. 

B. Formulations of Boundary-Condition Equations 

1. Steady-state solution 

The voltage and current equations at any distance x from the re

ceiving end are similar to equations (4.35) and (4.36). These 

equations are: 

Y. • i Sc. ÏS2 + h 2 5.x 2"^ ÎS2 

= 2 2ex 2'̂  ÎS2 * 2 2sx 2"'' Ys2 

where; 

S and 0 were defined in Chapter IV 

1.1 

V " 'Tfl.l"' 

1,1 
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Vg2 and are the prefault voltages and currents at the receiving 

end bus. 

and are the prefault voltages and currents at distance x 

measured from the receiving end bus as shown in Figure 5.2. 

ZQ = S r~^ S~^ Z 

2  ~ 1  - I t  
r  = S  A S  =  Q - ^ A  Q  

A = Z Y 

Z = R + jwL 

Y = jwÇ 

u = 120m 

si 
i + di I 

s2 

si 'dx 

— a 

-*-s2 

-H 

Figure 5.2. A schematic diagram for a transmission 
line of phase a 

For subsequent work it is useful to specialize (5.1) and (5.2) to per

tain to the sending end. The result is 

,-l ,-l 
Ysi - 5 Bet S Y,2 + =0 9 9 hz (5.3) 

,-l ,-l „ -1 
ïsl " 9 BcA 9 Is2 + 9 Bsi 9 Zo Ys2 (5.4) 
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where 

»CJI ° (TI L 
1.1 

"sJ, •= (Yl.i « 

1,1 

The line parameters and the line configuration are known, the computer 

program in Appendix B can be used to find the prefault voltages and 

currents at any location on the line at 60 Hz. 

2. Transient solution 

Transient analysis Is based upon the circuit shown in Figure 5.3. 

This circuit is derived by using the fault simulation in Figure 5.1 with 

the steady-state voltage, v^, properly removed. The voltage at the 

fault location is 

Yr(s) = Rf If(s) + sLj I^(s) + Vf(s) 

or 

Y r  ' h i t *  Ï £  » • = >  

where: 

Rg = fault resistance 

li- = fault inductance 
—r 

Z _ = Rf + s L_ which is a (3x 3) diagonal matrix 
—t —r —t 

Vj = superimposed voltage with all other sources properly removed 

= fault current which is equal to + I^g) 

From Figure 5.3, the sending end equation with, the source voltage 

removed is 
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Figure 5.3. Simulation of a faulted power system with only super
imposed voltage and all other voltage sources properly 
removed 

Ysl(s) = -'5r + = 

or 

Ysl = -5t ïsl 
(5.6) 

where: 

R = total resistance of the generator and transformer 
-t 

L = total inductance of the generator and transformer 
—t 

Z = + s which is a (3x 3) diagonal matrix 
-t —t —t 

Similarly, the receiving end equation is 

= "(Su + » W 

or 

-82 ° '-1 is2 
(5.7) 
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= load resistance matrix 

= load inductance matrix 

+ s which is a (3x3) diagonal matrix 

Using equations (4.35), (4.36), and (5.6) to eliminate and 

produces 

ïsl = (S 2el s'l) Vf + (2. S Ssl 9"'> irt 

" -5t 1(2 5,1 g-i) 1,1 + (Q 5̂ 1 Q-" zji) Y, ] 

Thus, by rearrangement, 

or 

where; 

and 

[S 2,1 + Zt 2 2si 2'̂  1 ïr -

- 9 231 2"' + h 2 2el 2"'l Iri 

Ï1 ïr = -Ï2 in (5-*) 

Ï1 = 5 2.1 + ït 2 2,1 2"'-

Î2 = 5„ 2 2,1 2'̂  + 2t 2 2.1 2'̂  

Also, by using equations (4.37), (4.38), and (5.7) to eliminate 

Ys2 Ig2' 

ÏS2 = (S 2.2 r"-) v, + (2, 2 2,2 2"^ 1,2 

- - I<2 5e2 2'^) ir2 + <2 5,2 2'^ Zjl) Jr ' 
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This can be rewritten in the compact form 

where; 

and 

h Yr = -Ï4 Îr2 

Î3 - S 5̂ 2 S + 2% g 5̂ 2 g Z, 

Ï4 • 9 5.2 g"'- + h 9 5e2 2"^ 

Equations (5.8) and (5.9) can now be condensed into the form 

in - -Ï3^ Î1 ïr «.10) 

Îr2 - Ï2 ïr 

The voltage at the fault location depends on the type of fault. 

Methods of finding for each type of fault are discussed in the next 

section. 

C. Voltage at Fault Location for Different Types of Faults 

The four possible types of faults are designated by 

1. Three phase to ground fault (3LG) 

2. Single line to ground fault (SLG) 

3. Line to line fault (LL) 

4. Double line to ground fault (2LG) 

1. Three-phase to ground fault 

For a three-phase fault, the voltage at fault location in the s-

domain is 
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r l n  ^tZa 
•— 

V 
< 

1 > ; 

4n i ^fb i ^Ec jT 

ri,l + 

Figure 5.4. Three-phase to ground fault 

Yr " Zf If + Yf 

and + Ip2 

therefore; 

Yr - 2f (irl + ir2> + ïf (5.12) 

By substituting and in equations (5.10) and (5.11) into equation 

(5.12) we obtain 

Yr ' 5f<-Ï2'' Î1 - Î4'' Ï3) ïr + Yf 

then. 

or 

Vj - [U + Z, T] Vp 

.-1 
ïr - 12 + 5( ïl ïf 

where U is an identity matrix and 

(5.13) 
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2. Single line to ground fault 

By assuming the fault on phase a, then the boundary conditions in 

the s-domain are 

^fa " ̂rla ^r2a 

Ifb = 0 

Ifc = 0 

Depending on the above boundary condition, the fault current is 

If = [If, 0 0 ]' 

" irl + I t l  (5.14) 

i , V 
a rla ra JCjLa. 

V, rb 

V 
rc 

ifc-O 

Figure 5.5. Single line to ground fault (a) 

By substituting and from equations (5.10) and (5.11) into 

equation (5.14) as 

i£ - -•ïi"'' Ï1 + Î4̂  Is' ïr 

=  - T V  
- -r 
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then 

V = -T"̂  If = -H I-
-r - -f - -f 

(5.15) 

where H = T 
-1 

Equation (5.15) can be written in a matrix form as 

ra 

V 
rb 

rc 

H 
11 

H 
21 

H 
31 

®12 ^13 

^22 ^23 

®32 **33 

fa 

(5.16) 

or 

V 
ra "**11 *-fa 

rb -**21 *-fa 

V 
rc -**31 Ifa 

then 

-r ° "^**11 **21 **31^ ^•fa 
(5.17) 

I can be obtained from the voltage at fault location of phase (a) as 
fa 

shown in Figure 5.5 

Vra = ̂ fa + "f "fa 

-**11 "fa 

-V 
fa 

f« **11 + Zf 
(5.18) 
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By finding from equation (5.18), then can be obtained by applying 

equation (5.16). 

3. Line to line fault 

By assuming the fault occurs on phases b and c, then the boundary 

conditions in the s-domain are 

= I 
rib 

+ I 
r2b 

V 
ra 

b 

a 

rb 

i. 
"r2b V 

rc 

Figure 5.6. Line to line fault (b-c) 

Depending on the above boundary condition, the fault current is 

(5.19) 

By applying equation (5.15) to obtain as 
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ra 

V 
rb 

V 
rc 

«11 «12 

«21 «22 

«31 «32 

H 
13 

H 
23 

H 
33 

0 

I 

-I 

fb 

fb 

(5.20) 

ra («13 ~ «12^ ^fb 

V 
rb («23 ~ «22^ Ifb 

rc («33 ~ «32^ Ifb 

then. 

^rb ~ \c ~ («23 ~ «22 ~ «33 «32^ ^fb (5.21) 

From Figure 5.6: 

\b - = ̂ fb - Vfc + Ifb (5.22) 

From equations (5.21) and (5.22), can be obtained as 

VFB - VFC 

fb - («23 - H22 - «33 + «32 - V 
(5.23) 

By finding from equation (5.23), then can be obtained by applying 

equation (5.20). 

4. Double line to ground fault 

When the fault occurs on phases b and c, then 

:fa " 0 

or 

^f " ^fb Ifc^ 
(5.24) 
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Y lfa=0 i fa r2b 

Figure 5.7. Double line to ground fault (b-c) 

By applying equation (5.15) to obtain as 

V 
ra 

rb 

rc 

1̂1 1̂2 1̂3 

®21 ^22 ^23 

^31 ®32 H 
33 

"o 

I 
fb 

I 
fc 

(5.25) 

V . and V can also be obtained from Figure 5.7 as 
rb rc 

\b = :fb + Vfb 

\c = :fc + Vfe 

(5.26) 

(5.27) 

From equations (5.25), (5.26), and (5.27), then 

^f ^fb ^fb "(^22 ̂ fb ^23 

:fc + Vfc = -(*32 Ifb + «33 Ifc) 

(5.28) 

(5.29) 

By solving equations (5.28) and (5.29) to obtain and as 
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ifb = ig; '(Zf + «33) ifc + Vfc' (5-3°) 

If. = s;; [(Zf + *22) ifb + Vfb] 

Elimination of produces 

"32 •" ""{«2̂  
+ H_) - tr^ V, 

fb H22 f 33' H23 ^ f 22' "fb H23 fb + ̂ fc> 

or 

I  -''ft ̂ fb + "fp) (3  3 „  

£b (Zj + Hjj) + H32 

where 

^ft " (^f H33) 

From equation (5.31) and (5.32), can be obtained. Once and 

are obtained, then can be obtained from equation (5.25). 

Methods for finding for each type of fault are written as sub

routines in the main program in Appendix B. 

B. Fault Transient Waveforms 

The currents at the fault location I^g) are obtained by 

applying equations (5.10) and (5.11). The voltage and current at the 

sending end can also be obtained from equations (4.35) and (4.36). This 

process for transforming the transient solution from the s-domain into 

the time domain is discussed In Chapter VIII. The total solutions of 

voltages and currents at the fault location and at the sending end are 
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obtained by adding the transient solution to the steady-state solution 

In the time domain. 

Appendix B consists of a computer program for numerical analysis of 

the various boundary value problems posed thus far. The program is 

general, and can be used for any line length, configuration, or fault 

type. Appendix A describes a hypothetical power system to be used for 

program testing and determining the relative Importance of the various 

parameters that are or may be Important In fault transient analysis. 

Figure 5.8 to 5.11 show some of the results obtained by simulation of 

the system described In Appendix A. In particular. Figures a and b In 

5.8 to 5.11 show current and voltage waveforms at the sending end that 

ensue from a fault at the middle of the line. 
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Figure 5.8a. Sending-end voltages for three-phase-to-gound fault 
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THREE PH. F.AT XI 
SEND. END.CUR. CR O 
SEND. END. CURR. CB A 
SEND. END. CURR. CC + 

N" 

0.00 0.80 2.80 2.V0 3.60 3.20 

Figure 5.8b. Sending-end currents for three-phase-to-ground fault 
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d-
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Figure 5.8c. Voltages at the fault location for three-phase-to-ground fault 
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Figure 5.8d. Currents i^^ at the fault location for three-phase-to-ground fault 
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SLG fault 

SEND. END. VGE VR 
SEND. END. VDE VB 
SEND. END. VGE VC 

0.00 O.SO 
TIHfe°°lN 

3.00 
(xior 

Figure 5.9'a. Sending-end voltages for single-line-
to-ground fault on phase a 
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SLG fault 

SEND. END.CUR. CR 0 
SEND. END. CURR. A 
9EN0. END. CURR. CC + 

ui" 

N~ 
07 

•a" 3 
(J 

», 
a.SO 

(XI0"* I 
0.50 2.00 

TIME°IN sfe' 
3.00 0.00 

Figure 5.9b, Sending-end currents for single-line-
to-ground fault on phase a 
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SLG fault 

VGE OF PH. m AT 
VBE OF PH. B AT 
VOE OF PH. C AT 

UJ 
O 

0_, 

9-

O.SO 2.00 3.00 0.00 
TIME IN SEC 

Figure 5.9c. Voltages at the fault location for single-line 
to-ground fault on phase a 
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SLG fault 

CUR OF PH. m HT F 

CUR. OF PH. C AT F 

ID" 

w" 

u 

O.SO 3.00 0.00 
TIME IN SEC 

Figure 5.9d. Currents i^^ at the fault location for single-
line-to-ground fault on phase a 
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L.TO L.FAULT AT XI 
SEND. END. VGE VR 
BEND. END. VOE VB 
SEND. END. VGE VC 

TIMË^IN 
2.SO 

txlO-« I 

Figure 5.10a. Sending-end voltages for line-to-line 
fault on phases b and c 
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L.TO L.FAULT AT XI 
SEND. CNO.CURR. CR O 
SEND. END. CURB. CB A 
9END. END. CURB. CC + 

IM" 

Z 

% 
u 

Q.SO 3.00 0.00 
TIMfe^IN sit' 

2.00 

Figure 5.10b. Sending-end currents for line-to-line 
fault on phases b and c 



www.manaraa.com

76 

L.TO L.FAULT HT XI 
VGE OF PH. fl AT F. 
VBE OF PH. B AT F. 
VBE OF PH. C AT F. 

a 

lU 
u 
CC 

r» a-. 
03 

O.SO 0.00 3.00 2.00 
TIMÈ" IN SEt" 

Figure 5.10c. Voltages at the fault location for line-to-line 
fault on phases b and c 
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Figure 5.10d. Currents i^.^ at the fault location for line-to-line 
fault on phases b and c 
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2.L.B. FAULT AT XI 
8EN0. END. VGE VR 
SEND. END. VGE VB 
SEND. END. VGE VC 

TIMfe°°IN 
2.50 

(xlO-«l 

Figure 5.11a. Sending-end voltages for double-line-to-
ground fault on phases b and c 
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2.L.F. FAULT AT XI 
9EN0. ENO.CURR. CR O 
SEND. END. CURR. CB * 
SEND. END. CURR. CC + 

TIMË ÎN 
2. so 

(xJO-* ) 

Figure 5.11b. Sending-end currents ig^ for double-line-to-
ground fault on phases b and c 
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2.L.G. FAULT AT XI 
VOE 0F PH. A AT F. O 
VBE OF PH. B AT F. A 

Figure 5.11c. Voltages at the fault location of double-line-to-
ground fault on phases b and c 
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2.L.G. FAULT AT XI 
cum. (JF PH. m AT F 
CUR- OF PH. B AT F 
CUR. BF PH. C AT F 

h-

Q.SO 2.00 3.00 0.00 

Figure 5.lid. Currents 1 ̂  at the fault location for double-line-to-
ground fault on phases b and c 
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VI. SYNCHRONOUS MACHINE EQUATIONS IN FREQUENCY DOMAIN 

In the previous chapter, the generator and transformer were repre

sented by a constant source behind a transient impedance. This repre

sentation is so commonly used in transient analysis that it can be con

sidered to be classical or standard. It is also subject to criticism; 

the very fact that a distinction must be made between "transient" induc

tance and steady-state inductance is tacit recognition that the generator 

is an inherently nonlinear circuit element which can only be represented 

by a Thevenin equivalent under rather special consitions. 

This research suggests that the errors introduced into transient 

analysis by use of the classical model are negligible when the fault is 

remote from the generator. When the fault is near the generator, these 

errors are significant. 

This section develops a sequence of transformations that make it 

possible to couple the generator equations with the line equations in 

the frequency domain. This eliminates the errors that arise when the 

fault is near the generator. 

Reference [29] described the full-machine model in the time domain. 

The model is shown in Figure 6.1 where; aa^, bb', and cc^ are the three-

phase stator Bindings, FF' is the field winding, and DD'* and QQ"* are the 

damper windings. 

The flux linkage equations in matrix form are 
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or 

d axis 

b axis 

4 a axis 

q axis 

c axis 

Figure 6.1. Full model of synchronous machine 

"̂ a" 

^F 

'Q 

^aa ^ab ^ac 

^ba ^bb ^bc 

L L , L 
ca cb cc 

^Fa ^Fb ^Fc 

Sa 4)b Sc 

^Qa ^Qb ^Qc 

^aF ^aD ^aQ 

SF ^bD HQ 

^cF ^cD ^cQ 

^FF ^FD ^FQ 

SF Sd h)Q 

^QF ^QD ^QQ 

"la' 

^b 

^c 

^F 

S 

^abc 

^CQ 

SS 
I L 

SR 

^RS I RR 

abc 

FDQ 

(6.1) 

where 

'SS 
stator-stator inductances 

L„_ and L__ = stator-rotor inductances 
bR Kb 
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L „ = rotor-rotor inductances 

The elements in the inductance matrix in equation C6.1) are identified 

in reference [29] as 

Stator self-inductances: 

L = L + L cos 20 H 
aa s m 

L,, = L + L cos 2(6 - 2n/3) H 
DD s m 

L = L + L cos 2(0 + 2TT/3) H 
cc s m 

where L and L are constants 
s m 

Rotor self-inductances: 

^FF ^ ̂ F ^ ' ^DD ̂  H ' ^QQ = Lq H 

Stator mutual-inductances; 

L , = L, = -M - L cos 2(0 + TT/6) H 
ab ba s m 

L, = L , = -M - L cos 2(0 - ir/2) H 
bc cb s m 

L = L = -M - L cos 2(0 + 57r/6) H 
ca ac s m 

Rotor mutual-inductances: 

^ ̂ DF ^R ^ 

^FD ~ ̂ QF 

h)Q = '̂QD " 0 

Mutual Inductances between the stator and the rotor 

^aF = Lpa = Mp cos 0 H 
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27r. Hf = Lpc = Mp cos (9 - -J-) H 

2TT. 
^cF = ^Fc - ̂  + T) H 

= ^Da = ̂  ® H 

2lt, 
^bD - ̂ Db - «D •="= '® - T' H 

27rv 
^cD = ^Dc = % + T> H 

^aQ = ^Qa = \ ® ^ 

Ofr 

hq = ^Qb = ^Q (G - ir) H 

2TT 
^cQ = ^Qc = \ (8 + IT") H 

A. Machine Equations in the Direct-Quadrature Components 

The synchronous machine equations can be transformed into the (0-d-q) 

components by using the modified Park's transformation [29]. 

The Park's transformation consists of thé set of equations: 

-Odq A - -abc 

-Odq A - -abc 

-Odq A - ̂ abc 

where P A 

'1//2 1//2 

cos 0 

sin 0 

cos (0--^) 

sin (9-^) 

1//2 

cos (0+ 

sin (0+ 
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The following method is used to transform the machine equations in 

the s-domain. Applying Park's transformation to the (a-b-c) partition, 

equation (6.1) produces 

•  I  •  
P I 0 

I  
- + -

0 1 u 
I 
I . 

abc 

FDQ 

r I • 
P I 0 

I 
-1 -

0 I U 
I 

ss SR 

RR 

• I -| 
P I 0 

I 
- f -

0 I U 
I  

P~^î 0 
I 

0 ! u 
I 
I 

abc 

FDQ 

( 6 . 2 )  

The final result of the matrix multiplications in equation (6.2) is 

or 

1 
!
 

'
 S
 

1 
1 

^Odq 1 ^DQ 

1 

^odq 

g
 

1 

^DQ j ^FDQ 

1
 

•r
i 

1 

^0 
0 0 0 0 0 ' 

^d 
0 

^d 0 KMp KM^ 0 
'd 

0 0 \ 0 0 KMQ 

^F 
0 KMp 0 

4 
0 

^F 

0 0 
S 

0 

0 0 KMq 0 0 

1 1 
O
"
 

•H 
1 

, K = /^ (6.3) 

LQ, L^, and are defined as 

0̂ = ̂  - 2%: H 

" ̂8 + *8 + 2 L* H 
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Lq = Lg +14; - ;! I'm ^ 

The voltage equations; 

From the equivalent circuit of a synchronous generator in Figure 

6.2, the voltage equations in the (a-b-c) components are; 

V = -r i —X C6.4) 

and 

À = L i + L i 

~) P 

VQ=0 J fe 
Figure 6.2. Equivalent circuit of a synchronous generator 

Equation (6.4) in a matrix form is 
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or in a compact form as 

"W \bc I " • ^abc 

^FDQ 

o
 

1 1 

abc 

FDQ 

(6.5) 

Applying Park's transformation to the equations in (6.5), the final 

results in the (0 -d-q) components are 

V 
Odq 

FDQ 

^abc 
0 

*FDQ 

Odq 

^FDQ 

Odq 

FDQ 

+ 

F 

0 
( 6 . 6 )  

where F = P P ^ A-, 
- - — -Odq 

-"o \ 

% 

From equation (6.6) the voltage equations are 

"o = -̂ 0 - ̂  s 

'd = -̂ d - *0 Aq - 'a ̂ d 

V =-X +0) Xj-r i 
q q 0 d a q 
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Substituting X^, and X in the above equations, they become 

'o "''a ̂ 0 * ̂0 

= -('a + "o \ \ + % "«Q iq + I'd d̂ + %"? if + V 

\ - -(r» \ - "o ̂ d Id - "o KM, 4 KMo Q̂' 

° - -('D 1» + K"D in + «R ip + 1» in ' 

0 - -(fq iq + KM^ iq + ) 

The speed of the synchronous machine is assumed to be constant in the 

first few cycles after fault inception. This assumption enables the 

machine equations to be transformed to the s-domain. Applying Laplace 

transform to the above equations with zero initial condition produces 

Vo(s) = -(r* + S Lq) IQ(S) 

Vj(s) = -[(r^ + s Lj) Ij(s) + Lq I^Cs) + s KMp Ip(s) 

+ s KMjj Ip(S) + KMQ IQ(S)]  

Vq(s) - Lj Ij(s) - (r^ + s L^) I^Cs) + KM, I/s) 

+ "o KMn Ir/s) - s IqCs) 

Vp(s) = s KMp Ijj(s) + (rp + s L^) Ip(s) + s IpCs) 

0 = -[s KMp Ij(s) + 8 Ip(s) + (r^ + s L^) Ip(s) ] 

0 = -[s KMQ Iq(s) + (rq + s L^) IQ(s) ] 
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Preceding equations can be written in the matrix form 

1 CO O
 

'-Cra+sl.,) 0 0 0 0 0 

VJ(s) 0 -Wo^q -SKMP 1 CO
 

Vq(s) 0 % -(RA+SLQ) V"r, -sKMg 

VpCs) 0 CO 0 CFP + S LP) = "E 0 

V^(S) 0 CO 1 0 -sM^ - 0 

y'\ 0 0 -sK Mq 0 0 -('Q+s tq 

or 

where 

•IqCS) 

IjCs) 

Ipfs) 

Iq's) 

(6.7) 

"V0DQ(:)" •^11 1 Z12" 

—+ — 

":ODQ(=)" 

I 
CO )
 

^21 1 ^22 

hi 

-('a + = I'o' 

0 

0 

-(r^ + s Lj) 

'"o 

-̂ o Lq 

-(fa + = \) 

(6 .8 )  
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0 0 0 

^12 = -sKMp -siCMo -WoKMq (6.9) 

a>oKMjj -sKMq 

0 sKMp 0 

=21 = 0 -sKM^ 0 

0 0 SK«^_ 

+ s Lp) S 

^22 = -£ F S 

0 0 

Elimination of rotor variables ; 

Since is constant (dc source), 

0 

0 

-(fq + ® V 

(6.10) 

(6.11) 

field voltage is zero and the rotor variables can be eliminated. The 

superimposed voltages VQ(S), V^(s), and V^(s) can be obtained by applying 

Kron reduction to the matrix partition. 

^11 1 ^12 
+ 

":5dq(=)" 

1 

o
 

1 

^21 • ^22 —1 
(0 
O
"
 

H
 

1 

(6.12) 

Then, 

= 'Sll - 5I2 522"' Ï2lJ io'dq<^> 

-Odq^®^ ^Qdqfs) (6.13) 
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where : 

^Odq(s) = ̂ 11 - \2 ̂ 22 ^21 

B. Transformations Between Different Sets of Components 

As shown in the block diagram in Figure 6.3, the (0-d-q) components 

are related to the (a-b-c) components. Similarly, the (0-f-b) components 

are related to the (0-d-q) components. The (0-f-b) components are found 

to be very useful in the interconnection of the rotating part and 

stationary part in the power systems. 

Direct-phase , A"^ Symmetrical 
components 
(a-b-c) 

' 4 components 
(0-1-2) 

P"^ 

1 
1 
' 

Direct-quadrature 2 Forward-backward 
components 
(0-d-q) 

T 
-o 

components 
(0-f-b) 

Figure 6.3. Block diagram of different transformation matrices 

The transformation between the (0-d-q) components and the (0-f-b) com

ponents is defined as i . 

I 

*4 = If * 

- -If + it 

(when the q-axis lags the d-axis 

as Figure 6.4). 

Figure 6.4. Forward-backward 
components 
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4 = (Ij - j iq)/2 

- (id + i 
(6.14) 

By using the same transformation for voltages, the instantaneous power is 

^d + \ \ = (Vf + Vt)(if+lh) + j(Vf-Vt)j(ig-it) 

= Vg ig + v̂  iĵ  + v̂  î  + v̂  if + Vb l̂ -Vf î ) 

= 2(vj i^ +v^ ig) (6.15) 

In order to make the transformation power invariant (the instanta

neous power in terms of both sets of components does not involve a factor 

2) it is evident that the factor 1/2 in equation (6.15) should be dis

tributed between the two sets of equations. Thus the transformation 

matrix that transforms voltage or current from (d-q) axis to (f-b) com

ponents is 

T 
-o 

f 

0 

1//T 

j//r 

b 

0 

1//T (6.16) 

The inverse of the matrix T is 
—o 

îo"' 

d 

0 

1//T 

1//2 

q 

0 

-j//T 

j//T 
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where T ^ = [T ]^ , so is a power invariant transformation matrix. 
—o o —o 

Another transformation matrix (^0^2) defined in many references [23] 

to transform the (a-b-c) to the (0-1-2) components. 

-012 

1 1 1  

2 
1 a a 

where h = 1 for the Fortescue transformation 

h= ̂  for the power transformation 

and "a" is an operator which is equal to 1/120° 

when h = /s , or 

(6.17) 

^012 

1 1 

1 a 

1 
2 

a a 

The modified Park's transformation matrix is also a power invariant 

transformation matrix because 

fi./f 

1//2 cos 0 

1//2 cos (6 - 120) 

1//2 cos (6 + 120) 

(orthogonal matrix) 

sin 9 

sin (0 - 120) 

sin (0 + 120) 

(6.18) 

Since all the tranformation matrices are power invariant, then any 

impedance matrix can be transformed from any component system to any 
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other system. For example, if represents the impedance matrix in 

the old system and represents the impedance matrix in the new 

system, then 

5„e„ = Î*" 2old Î (S-19) 

where T can be any power-invariant-transformation matrix. 

In order to synthesize the previous developments into a useful 

process, it is necessary to find a matrix that transforms from the 

(O-f-b) components to the (0-1-2) components. As in the block diagram 

in Figure 6.3, the relations between the (0-d-q) components and the 

(O-f-b) components can be obtained by the transformation matrix T^. 

Then, the relation between the (O-f-b) components and the (0-1-2) com

ponent can be obtained by the following methods. 

Yofb = îo"^ 20d, 

= I'l P V . 
-o - -abc 

-̂o - -012' -012 

= Ï2p Ï012 

where 

-2p " -o - -012 

or 
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-2p ' 
0 1//2 -M fi 

0 n/ï j//2' 

4 
1//2" 1//T 1//T 

2tt 2ir, 
cos 0 COS (0 =-) COS (0 + -R-) 

2tt 2ir 
sin 0 sin (6—r-) sin(0 + -r-) 

X 

1 a 

a 

1 

a 

0 1 2 ̂  

0 1 0 0 

= f 0 
-je 
e 

0 (6.20) 

b 0 0 
j0 
e 

where 

0 = + ô + TT/2 w = 377 rad/sec 
o 

(6.21) 

The method of finding the angle 6 will be discussed in the next section. 

Tgp is also a power invariant matrix because [Tgp] ̂  = [Tgp]^. The 

matrix in equation (6.20) is a very simple transformation matrix, since 

it is equal to its own transpose and it has only diagonal elements. 

C. Voltage Equations at the Sending-End Bus 

From equation (6.20), the superimposed voltages In the (0-f-b) 

components are 

Vf = Vl 

v{ e-jWot . e-j* (6 .22 )  

and 
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j6" 
(6.23) 

where ô"* = 6 + Tr/2 

Equations (6.22) and (6.23) are in the time-domain. They can be trans

formed into s-domain by means f(t) exp(jw t) < = > F(s-jw ) , then 

Vg(s) =v£(s + jaj^) exp(-jô') 

V^(s) =V2(s~jw^) exp(jôO 
(6.24) 

Similarly, 

I^(s) = I^(s + jw^) exp(-jSO 

I^(s) = Ig(s - jw^) exp(j6') 
(6.25) 

Since the zero sequence of voltage and current do not change from one set 

of components to another, equations (6.24) and (6.25) can be written in a 

matrix form as 

or 

and 

1 
Y-

N 
CO 

Vf(s )  II 

V; (s )  

-j<s-
e 

0 

0 

jô-
e 

Vj(s) 

v{(s +jw^) 

VgCs-jw^) 

-Ofb^®^ -t -012(3^) 

Î0fb<^> = It io'l2<«^> 

(6 .26)  

(6.27) 

If ZQjq(s) in equation (6.13) represents the impedance matrix in the 

old system and ZQ^^(S) represents the impedance matrix in the new system. 
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then similar to equation (6.19) ZQ^J^(S) can be obtained as 

Zofb(s) - ÏÔ' 5od,<=> Ï0 

^ t 
denotes the conjugate transpose of T^. Similarly, 

-012^®^ ït -Ofbfs) It 

By substituting Z^gy(s) in (6.28) into (6.29), the result is 

-012* 

bdq^®^ * Ï12 

(6 .28)  

where 

T, „ = T 

T*C T 
it i 

, * = 
(T„ T 
-o -

*t 
-12 * 

•o -t 

1 0 

0 1//2 

0 j//2 

10 0 

0 exp(-jô^) 0 

0 0 exp(jô') 

(6.29) 

(6.30) 

1 

/2 

/f 

0 

0 

exp(-j8^) 

j exp(-jô^) 

0 

exp(jô^) 

-j exp(jô^) 

(6.31) 

The above transformation matrices are used to find the superimposed 

generator terminal voltages (v^) in the sequence components as follows. 

As equation (6.13) 

t 



www.manaraa.com

99 

T_ y " (s) = (s) • T • I ' (s) 
"° "®Ofb "° -Bofb^" -odq 

ÏO • ît • Voi2^='' - • ïo • ît • îg,,/»') 

V„ (s ) = T "1 Z_,„(s) ' Ti_ . I- (sO 
'012 

-12 -Odq^°/ -12 g, 
012 

= T *t Zn,_(s) • • I" (s') 
-12 -Odq'"' -12 =g 

012 

= Z„ (s) • I " (s') 
~®012 ~®012 

(6.32) 

where 

Z„ (s) = T*î ' Z^,(s) • T 
-g, 
012 -12 -Odq^^ -12 

(s') = 

'012 

v5(s) 

V£(s +jw^) 

VjCs-jWo) 

and I ̂  (s') = 
g 
012 

i5(s) 

I^(s+ jO)^) 

Ij(s-jO)^) 

(s^) representing the shifted s-domaln, (i.e.,) no shifting in zero 

sequence, shifting the positive sequence by (jw^), and shifting the 

negative sequence by (-jw^). 

If Vg represents the generator terminal voltage and v^^^ represents 

the sending end voltage, then the sending end voltage equation from the 

generator side can be obtained. 

As shown in Figure 6.5, the sending-end voltage in the shifted s-

domain can be written as 
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Zj.j.Cs"') = r + s^L 

+ Xg(=') 

V̂ (s') 

I,L<s'> + 

V<=') 

Figure 6.5. Equivalent circuit of the transformer 
in the shifted s-domain 

- 2tr(s') ' 
012 '012 

(6.33) 

where is the impedance matrix of the transformer in the shifted 

s-domain which is written as 

Ztr(s') = 0 

0 

0 

Ztrlfs + iw,) 

0 

0 

0 

Ztr2(:-jWo) 

Equations (6.32) and (6.33) are combined as 

012 '012 '012 012 

but I' (s') = l\ (s') , then 
®012 012 

012 '012 
tr -si 012 

(6.34) 

where - Zcr(s') 
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Equation (6.34) is used to find the sending-end voltage from the 

generator and the transformer side in sequence components and in shifted 

s-domain. With the above method, the machine equations (having time 

varying parameters) can be combined with the transmission line equations 

(having frequency varying parameters) in frequency domain. 

Rotor angle of synchronous machine: 

The main field-winding flux is along the direction of the direct 

axis as shown in Figure 6.1. This flux produces an EMF that lags by 90°. 

Therefore, the machine EMF (E) is primarily along the rotor q axis. In 

steady-state analysis, the phasor Ë leads the general terminal voltage 

v^. The angle between Ë and v^ is the machine torque angle 5. At zero 

time, the phasor v^ is located at the axis of phase a (reference axis) 

as shown in Figure 6.6. The q axis is located at an angle 6, and the d 

axis is located at 6 = 6 + 7r/2. At t > 0, the reference axis is located 

at an angle w^t with respect to the axis of phase a. The d axis of the 

rotor is therefore located at0=a)t + ô + 7r/2 where w is the rated 
o o 

(synchronous) angular frquency in rad./s and 5 is the synchronous torque 

angle in electrical radians. The angle 6 can be obtained from the 

steady-state condition. The boundary conditions are the terminal voltage 

v^, the terminal current i^, and the angle (f) between v^ and i^. 

From the phasor diagram in Figure 6.6 

V = 't + ('a + j (6-35) 

where r = stator resistance and i^ = sending-end current î . a t ° s 
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d axis q axis 

Figure 6.6. Phaser diagram of the synchronous machine 

The terminal machine voltage is 

' 's + (ftf + J Xcr) (6.36) 

From (6.35) and (6.36) 

V ' \ + (fcr + j \r' \ + (r* + ̂ 

- *3 + <^„t + j Xcoc) (6.37 

where 

fee • + 'tr 

\ + "tr 

Therefore 6 is the angle of Ë 
qa 

By knowing the rotor angle 6, then the transformation matrix T^^g 

in equation (6.31) can be obtained. 
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VII. INTERCONNECTION OF SYNCHRONOUS MACHINES AND 

TRANSMISSION LINES IN FAULTED POWER SYSTEMS 

In order to make the line equations compatible with the machine 

equations, the line equations must be formulated in sequence components 

and in shifted s-domain (s^). 

A. Formulation of the Transmission Line Equations 
in the Shifted-Frequency Domain 

Equations (4.3) and 4.4) are transformed into sequence components by 

using the transformation matrix A^^g equation (6.17). 

~ dx 2^012^^'^^ ~ -012 -(s) -012 Ï012 Imo(x,s) 

~ -012 ioi2^*'®^ 
(7.1) 

Similarly 

dx ioi2^^'®^ ^ -012 ioi2^*'®^ 
(7.2) 

where 

-012 -012 -(s) èoi2 

-012 ~ -012 -(s) èoi2 

The second derivatives of equations (7.1) and (7.2) are 

-012 -012 -012 Ym o(x*s) 
dx 

-A YoiaCx.s) 

and 
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dx 
^ 2 ioi2^*'®^ -012 -012^*'®^ ±012 -012 

(7.4) 

where 

- ~ -012 -012 

-012 -012 

The same method that was used in Chapter IV is used in this chapter to 

solve equations (7.3) and (7.4). Iqj^2(*>s) and Vqj^2(*»^) are written as 

"I and 'V to simplify the notation. Equations (7.3) and (7.4) are 

decoupled by using the modal transformation introduced in Chapter IV. 

The following relations are obtained: 

'A "S) "V"*" (7.5) 

Similarly, 

(7.6) 

where: 

is"the eigenvector matrix of 'A 

'Q is the eigenvector matrix of "A 
t 

+ + 
and "1 are the modal voltages and currents in sequence components, 

(^s"^ "k •'S) and ('Q~^ 'Q) are diagonal matrices where the diagonal 

elements are the eigenvalues of "k or •*A . 
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Therefore, 

'S"̂  "A 'S = "Q = 

Equations (7.1) and (7.2) can also be decoupled as 

i; 'I* - -'s-i '2 'f - -'D, '1+ (7.7) 

± '1+ = .'g-1 -S Y = -'Dy 'I* (7.8) 

Solutions of (7.5) and (7.6) are known as 

'V"*" = 'M exp(-'rx) + -B1 exp("rx) (7.9) 

= "Ç1 exp(-'rx) + "D1 exp("rx) (7.10) 

'Al, 'Bi, "*01, and ^D1 are obtained from the boundary conditions as 

specified in Chapter IV. 

'Ai = f rr̂ -D̂ '1̂ 1 +'vj: ] 

'B1 •= I [V - 'r-i -D  ̂ '4 1 

'çi-i rr-i'Dy-v^'4] 

= i I'irl - 'Sy 'Yr' 

Substituting "AJ, 'Bl, 'Cl, and 'D1 into equations (7.9) and (7.10) 

produces the sending end equations 

= %! 'Yr + '?sl '4 
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'îtl • \l %1 + '2.1 t (7-12) 

where 

'Del = c°sh x̂ ) 

1,1 

"Dgl = ^ \ , i  ̂ 1> 

i,i 

'z"*" = "D 
—o — —z 

Note that ^F, ^7^, ""D and _ are diagonal matrices, 
-o -cl -si 

The primes in the above equation are used to indicate that all the 

parameters and variables are in sequence components (0-1-2), Equations 

(7.11) and (7.12) are obtained in the shifted s-domain (s^) by the 

following procedure: 

No shift in zero sequence components 

• The positive sequence component is shifted by joj^ 

• The negative sequence component is shifted by 

So, equations (7.11) and (7.12) become 

- 'Scsi + -»ssl 'C 'iîl<='' (7-13) 

'Sl<-') - 'Scsi '5s.l 

The modal variables are transformed back to the phase variables as in 

Chapter IV. Equations (7.13) and (7.14) become 

'V̂ l(s') = (-S -fl) 'V̂ (s-) 

+ ('Z.S '9 'irl<='> 
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+ <'2 »ssl '2'^ > (7-16) 

The sending end voltage from the generator side was obtained in 

Chapter VI, thus equations (6.35), (7.15), and (7.16) can be combined. 

The result is 

CS -5esl + ('Z.S '2 'Sssl '2"^) = 

ĝtK'S 'Scsi '2"̂ ) %!(=') + <'2 '2,,1 %(»')! 

Then, 

or 

where : 

% %<=') - -'Î2 

'lrl(s') - -%'• li %(s') (7.17) 

'̂ 1 - '5 Scsi 's'l - '2 %si -2"' Xl 

and 

'h ' X. '2 '«ssi '2"1 -%t '2 'Ecsi r' 

The receiving-end equations in the s-domain are 

• <'! 'Ees2 

+ ('So. '2 'Ss,2 19"') %2k') O . W  
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'Js2<='> = <'2 '5cs2 '2"̂ ) 'îrzCs') 

+ ('g Sssz 'q"l 'Ẑ s) '?,(»') C7.19) 

The receiving-end voltage equation from the load side in the s'-

domain is 

'2a2<='> = "IszCs') C7.20) 

where and it is a (3x3) diagonal matrix. Similarly, 

equations (7.18), (7.19), and (7.20) can be combined and they become: 

'Ys2('s) ' <'='Scs2 '?;(:')+ ('Z., 'Q '5SS2 '\2<='> 

--'5îs''2 'Sc.2 1,2(3')+ ('g'Sss2 T' 'z;s)'Yr(s')' <'-2» 

Equation (7.21) is rewritten in a compact form as 

or 

where 

-Î3 %(=') - -1,2(9') 

%2(^') - -'Ï4^ 'Î3 %(=') (7-22) 

'Î3 • '» »cs2 'S'l + \s '2 '5..2 '2'" "C 

and 

'Ï4 = 'Zos '2 'Sss2 'Q'̂  + 'Z&s '2 '5es2 

The voltage equations at the fault location (V^) are obtained for all 

types of faults in Chapter V. In order to use these, they must be 
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transformed into sequence components and s -domain in the same manner as 

the other equations derived in this chapter. To clarify the above 

procedure, a three-phase fault is taken as an example. As discussed in 

Chapter V, the voltage at the fault location in s-domain is given by 

- Zf I((s) + VjCs) 

Applying the transformations 

'ïrf») = 60^2 Yr(:) 

Iri(s) = Aq^2 Irl^G) 

IrzCs) = Ag^g îr2^®^ 

-f -012 -f -012 

to the preceding equation produces 

"If(s) + "Vf(s) (7.23) 

In equation (7.23), the positive sequence is shifted by and the 

negative sequence is shifted by -jw^. Then equation (7.23) can be 

written as 

and 

- "Zfs 'Iff*') + 'YfC:') 

If the prefault voltage is assumed as a cosine function, then prefault 

voltage at the fault location is 
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cos(a)^t + ̂  + a^) , 1=0,120,240 (7.24) 

Equation (7.24) is transformed in the (0-1-2) components, and the result 

is written in a matrix form as 

t-
h 

0
 

1 

1 

^fl ~ 3 

^f2 

1 1 

1 a 

1 a 

cos((0̂ t + # + 0) 

cos(wt) + <t) - 120) 

cos (cat + (|) + 120) 

(7.25) 

But, 

cos(a)^t + (j) + a^) = Y [exp(jco^t) exp j((|)+ap 

+ exp(-ja)^t) exp -j(^+a^)] (7.26) 

Equations (7,25) and (7.26) are combined and the result is 

"fO 
(7.27) 

4. J* -̂3120,; 

 ̂[J""' .«] (7.28) 

Similarly, 

(7.29) 
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Equations (7.27), (7.28), and (7.29) are written In a matrix form as 

<
 

I-
h 

O
 0  

- jw^t  

^ f l  2  
e  

^f2  

- jWot  

e  e j*  

(7.30) 

By taking Laplace transform of equation (7.30), then the result is 

Vf0(:)" 0 

^Yf(s) = Vfi(s) 2 
1/(s - jWo) •e

-

V,2(8) 1/(s + jw^) 

1 
-e

-
T
 0

) 

(7.31) 

In order to find equation (7.31) in the s'-domain, the positive sequence 

is shifted by jto^ and the negative sequence is shifted by -jw^. Thus 

equation (7.31) in the shifted s-domain (s^) is 

'Yf(s') = S J* (7.32) 

Once •'Vf(s') is obtained, then the voltage at the fault location can be 

obtained from equation (7.23) as follows 

= 'Zfsl'irl'®'' + + 'Yf(s') (7.33) 

Equations (7.17) and (7.22) can be used to eliminate 'l^^(s") and 

' 1 ^ 2 p r o d u c e  
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'ïl - "C 'Ï3I + 'ïfCs') 

'Vj(s') = in + 'Ï1 + 'i;!'!])] %(S ) 

- 12 + 'Zfs 11 %(=') 

or 

%(sO = [U + "Zgg 'T]"^ %(8') (7.34) 

where 

'T - 'l-l -tj Vlf -tj 

after ^V^(s^) is obtained, then and are obtained from 

equations (7.17) and (7.22). Consequently, the sending-end voltages and 

currents can be obtained from equations (7.15) and (7.16) in the s^-

domain. The above equations give the transient solution of the voltages 

and currents in the (0-1-2) components. 

The total solution for voltages and currents can be obtained by the 

following steps: 

The shifting in the frequency domain must be changed back. The 

positive sequence component is shifted by and the negative 

sequence component is shifted by for both voltage and current 

components. 

• The voltages and currents at the fault location and at the 

sending-end are transformed from (0-1-2) components to (a-b-c) 

components by using the transformation matrix 

• The above voltages and currents are transformed into time domain 

by using the fast-Fourier transform (FFT). 
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Therefore, the total solution for voltages and currents can be obtained 

by adding the steady-state solution to the transient solution at the 

point of interest. 

B. Fault Transient Waveforms for Three-Phase Fault 

The method of finding time variation of voltages or currents of 

interest is described in Chapter VIII. The example in Appendix A 

is used to test the proposed solution. The computer program in Appendix 

B is modified that can handle the system equations with the full machine 

model. The waveforms of the three-phase sending-end voltages and 

currents are obtained for three-phase fault at the middle of the line. 

These waveforms are shown in Figures (7.1a) and (7.1b). 
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THREE PH. F.RT XI = 100 mi 
SEND. END. VGE VA " 0 
SEND. END. VBE VB & 
SEND. END. VBE VC + 

Q~ 

W. 

O.SO 2.50 
(xlO-* I 

0.00 
tihE°''IN s^t" 

2.00 3.00 

Figure 7.1a. Sending-end voltage for three-phase fault 
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THREE PH. F. AT XI = 100 mi 
SEND. END.CURB. CA 0 
SEND. END. CURB. C& * 
SEND. END. CURB. CD + 

10" 

o 

V} 

0.50 0.00 1.00 2.00 
TIME IN SEC 

Figure 7.1b. Sending-end current for three-phase fault 
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VIII. METHOD OF COMPUTATION 

Appendix B consists of the FORTRAN program used to obtain numerical 

solutions of the faulted power system equations. In this program, well-

established library subroutines have been utilized. These subroutines, 

called LEQTIC and EIGCC, are said to be "zero-error" programs. The first 

inverts any nxn complex matrix and the latter computes the eigenvalues 

and the real eigenvectors matrix of a complex nxn matrix. Such sub

routines have an error indication (1ER) which will terminate the program 

if a singularity is indicated in the LEQTIC subroutine or if the EIGCC 

subroutine fails to find the eigenvectors of the matrix. A well-known 

fast Fourier transform subroutine (FFT) is also used which is based on 

decimation in time techniques [30]. 

Transform method of solution: 

Time domain solutions are obtained from frequency domain equations 

by the inverse Laplace transform integral 

Since the system is stable, all poles are located in the left half 

plane in the complex frequency domain. Also, since the solution includes 

a 60 Hz component, there will be at least one complex conjugate pair 

along the imaginary axis. Therefore, the path of integration has to be 

displaced from the imaginary axis by a so-called convergence factor (a). 

The inverse Laplace transform [31] has precisely the desired effect 

of shifting the line of integration. This may be seen by making the 

J* F(s) exp(st) ds 
a-joo 

(8.1) 
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substitution 

s = a + jo) (8 .2 )  

in the inverse Laplace transform of equation (8.1) which then becomes 

where t > 0 

and f(t) = 0 for t < 0. 

The integral in equation (.8.3) cannot be evaluated analytically and 

it is necessary to evaluate it by numerical methods. In order to carry 

out the numerical integration, it is necessary to truncate the finite 

range of the integral to some finite value, say (-n,JÎ). This introduces 

a truncation error which, being multiplied by exp(at), increases rapidly 

with (at). This sets an upper bound to the choice of (a). The best 

value to use is discussed later. 

To examine the nature of the truncation error, the value of f(t) 

with the integration range truncated is given as 

00 

F(a + jw) exp(at) exp(jwt) dw (8.3) 

or 

00 

f(t) = f + jw) 4) (jw) exp(jwt) du 
-.00 

where 

1 , |w| < 0 
(|>(jw) = 

0 , |w| > 0 
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The complete Fourier transform of (|)(jw) is given in reference [32] as 

0(t) =-^ J expCjwt) dw = (8.4) 
—f2 

One interpretation of this truncation is that the function f(t) is 

scanned by the passage of the Dirichlet Kernel sinCflx/TTT over it [33]. 

The periodic nature of this function gives rise to Gibb's oscillations 

[34]. 

Since the period of oscillations of <j)(t) is 2m/^, as shown in 

Figure 8.1, a better representation of f(t), say f^(t), is achieved by 

T o  1  

averaging over this period in the following way. 

t+n/0 

-TT/Q 

Q fi t-Hr/fi 
= exp(at) g f F(a+jw) dco f exp(jWT) dx (8.6) 

(2n)^ -fi t-ïï/n 

Evaluation of the inner integral (as in reference [34]) gives 

fgXt) = — / F(a+jw) a (w) exp(jwt) dw (8.7) 

where 

'<"> - Iwm"' 

The function o(w) is called the sigma factor [32-34] . Since the func

tion fgXt) is a real function, it implies that; 

F(a + jw) = F*(a - jw) (.8.9) 

Therefore 
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fi I 0 

Figure 8.1. The Dirichlet Kernel 

f (t) = exp(at) 
a TT 

n 
Real { j* F(a+jw) a (w) exp(jwt) dw } (8.10) 

o 

The sigma factor: 

The sigma factor, as explained above, is a mathematical device which 

is often used in conjunction with the numerical inversion of the Laplace 

(or Fourier) transform. Its purpose is to suppress the Gibb's oscilla

tions, which sometimes appear in the computed time function. 

To Illustrate the problem involved, consider the Laplace transform 

of a unit step function. The Fourier integral for the step function 

-TT/2 for t < 0, IT/2 for t > 0, may be represented by the integral 

On truncating the range of integration (say fi) the sine integral is 

obtained, i.e.. 

sin(wt) 
[32] 

o 

do) = Si (fit) (8.11) 

where = N*Aw and Aw is chosen as 7.5 ir 
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N = 2 

This function is shown in Figure 8.2. with and without the sigma factor. 

In curve 2, the Gibb's oscillations are apparent and sustained. On 

introducing the sigma factor and carrying out the integration process 

numerically, curve 1 in Figure 8.2 was obtained. Clearly the Gibb's 

oscillations are virtually eliminated by the use of the sigma factor. 

Numerical integration: 

The numerical evaluation of the integral of equation (8.10) is 

based on discrete samples of F(a+jw) taken at points lying along the 

path of integration. Let these samples be taken at a j , j , 

etc. as indicated in Figure 8.3. Application of the midpoint rule of 

numerical integration then gives the following expression for the value 

of fgXt) at a selected time instant tj^ 

X 

exp[(j Aw) At • k] Aw (8.12) 

where 

n = N Aw 

Proceeding with equation (8.12) 

(8.13) 
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Ao) = 7.Sir 

M = 9 , N = 2 = 512 

fi = 512 * 7.5n 

UNIT STEP 
1 USING SIGMA M=9 
2 NO SIBMA 

«D 

O 

0.80 
TIME 

1.60 3.20 
( X I 0 - ^ )  

0.00 

Figure 8.2. Effect of sigma factor 
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and 

Q, 

j ̂  Aw 

,3Aw 

.Aw 

Real axis .Au 
•^T 

. 3 Aw 
-J-T-

-j ̂ Aco 

Q. 

Figure 8.3. Frequency domain 

f\(w) = F(a+j Aw) a Aw 1 Aw 

Since N discrete samples in the frequency domain result in N discrete 

values in the time domain, 

At . I? = 2.1 
Aw'N 

and equation (8.13) becomes 
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° V 

-ijp- Real (k) exp 

at N 
E F (w) exp 

1=1 

At k) 

(^) - ( -j~At k 

(8.15) 

where F(k) is obtained by FFT algorithm [31]. 

The special form of equations (8.14) and (8.15) allows the use of 

FFT algorithm which is well-known to be computationally efficient. 

This is because the FFT algorithm requires only N loggN units of 

Computational requirements are thus reduced by a factor of approximately 

N/loggN, e.g., 102.4 for N = 1024. In short, a very substantial 

reduction is obtained. 

Numerical integration parameters; 

As indicated in the last section, it is necessary to assign values 

to the convergence factor (a), the step size (Aco) and the range (0). 

These parameters are not only interrelated in a complex way but their 

choice depends on the time over which the solution is required. 

Choice of n: 

If n is chosen too small, it may limit the rate of rise and some 

high frequency components may not appear in the solution. This is 

illustrated in Figure 8.4 by applying the technique to a unit step 

function with two different values of It is clear that using a 

higher value of 0 results in elimination in the rise time. The value 

used based on the mathematical experimentation is : 

2 
computation [31] compared with N units in the case of the direct method. 
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N = N • Aw = 24,127.43 rad/sec. for M= 10, Au)= 7.5IT. 

However, the above value of 0 was increased by a factor of 2, 4, and 8 

and it did not give any significant change in the final results. 

Therefore, the choice of 0 could be the above value multiplied by 2^, 

and i=0,l,2,... etc., depending on the case under study to include the 

highest frequency that may be in the solution. 

Choice of (Aw) 

The step size should not be too large or too small for an accurate 

solution. The following choices have shown (Figure 8.5) to be accurate 

Aw = 7.5 TT or 15 IT 

Choice of (a) 

The parameter (a) plays an important role in numerical integration. 

As previously mentioned, truncation in the frequency domain introduces 

errors. Such errors may increase rapidly if (a) is not precisely chosen. 

To find the best value, different numerical values were assigned to (a). 

The value that gave the best results was equal to the step size (Aw). 

An illustration of such choice is shown in Figure 8.6 for two values 

of (a). 

Finally, the following parameters were tested on sinusoidal and 

cosinusoidal waveforms (Figures 8.7 and 8.8); 

Aw = 7.5 ir 

a = Aw 

10 
2x7.5 n = 24,127.43 rad/sec. 
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In summary, as a result of extensive mathematical experimentation, 

the parameters that have been chosen gave eminently satisfactory results 

for the severe cases that were tested. The cosinusoidal, sinusoidal, 

and unit step function have poles on the imaginary axis. However, the 

solution is accurate and stable. This validates the technique for any 

other functions that have their poles on the imaginary axis or in the 

left half plane. As a conclusion, the technique implemented in this 

work is numerically stable and accurate. Furthermore, the inversion 

process includes a FFT program which has been proven to be computation

ally efficient. 
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ÏÏ = N • Ato 

= 2^ (7.5 IT) 

1 M = 6 
2 M = 9 

UNIT STEP 
1 USING SIGMA M=6 ^ 
2 USING SIGMA M=9 + 

o 

2.50 0.50 1.50 2.00 1.00 
TIME (x io-^  ;  

Figure 8.4. Effect of fi 
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O 
O 

O 
CO 

S 

Z)° 

Q" 

g 
0 = N ' A w = 2 ' A w  

lAto = -||-ir = 3.75Tr 

2 Aco = TT = 7.5 1T 

UNIT STEP 
1 A(JJ= 3.757T A 
2 Aw= 7.5 ir + 

-+ 

1 1 1 1 1 
0.00 o.yo 0 .80 1 .20 1 .60 2.00 

TIME (XI0-^ ) 

Figure 8.5. Effect of Aw 
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n =  N » A a ) , N = =  2 ^ ^  ,  A w  =  7 . 5  IT 

1 a = Aw = 23.562 

2 a = "I Aw = 11.781 

o o 

S 

S 

o" 

UNIT STEP 
1 ^ USING SIGMA A=DW 
2 4- USING SIGMA A=.5 DW 

•Ji. 

1 1 1 1 1 
0.00 0.20 o.yo 0 .60 0 .80 I .00 

TIME (xio-i) 

Figure 8.6. Choice of the parameter (a) 
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fi = 2^ • Aw 

AW = 7.5TT, M = 1 0 ,  a  =  AW 

SINE FUN. 
USING SIGMA A 

o 

Q 

• J I 

o_ 

a 

Ll_ 

T 
0.20 O.MO 

TIME 

T 
0.00 I .00  

[xlQ-i I 
0.00 0.60 

Figure 8.7. Sinusoidal function with sigma factor 
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fi = 2^ • ̂  

A" = 7.5 , , M . 10 , 3 ^ 

COS FUN. 
USING SIGMA 

wQ 

0.00 0.20 
TIME 0.60 

1.00 

Figure 8.8. 
Rosine function 

with sigma factor 
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IX, COMPARISONS AND CONCLUSIONS 

In almost any simulation study, there comes a point where mathemati

cal expediency prevails over physical reality. In the specific case of 

transmission line transient simulations, previous investigators have 

found it expedient to ignore assymetric magnetic coupling between the 

lines (untransposed lines), and/or frequency variation of line param

eters. Expediency is also dictated to some degree by mathematical 

strategy; when frequency dependent line parameters are included, it is 

necessary to use frequency domain analysis. In such cases, expediency 

has made it convenient to represent the generator by a Thevenin equivalent 

with constant inductance. This thesis has developed a simulation method 

that transcends these particular limitations. One of the important con

sequences of this work is that it makes it possible to do comparative 

studies that show the consequences of including or neglecting a particular 

factor. Subsequent sections in this chapter compare the consequences of: 

• assuming that the lines are ideally transposed 

• neglecting the variation of line parameters with frequency 

• modeling the generator as a Thevenin equivalent 

• neglecting the fault impedance 

• neglecting the skin effect 

• assuming lossless line. 

Effect of transposition: 

The magnitudes of the fault-induced voltages depend on the values of 

of the mutual terms of the line surge impedance matrix, and this in turn 
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depends on the spacings and configuration of the conductors of the line. 

Equal spacing or equal mutual couplings between the conductors is equiva

lent to assuming transposition of the three phases of the line. With the 

line untransposed, the mutual terms of the surge impedance matrix will 

not, of course, all be equal. As a result, the voltage induced in a 

particular phase will depend on its position on the tower relative to the 

phase or phases energized. The effect of transposition on the sending-

end voltage waveforms can be shown in Figure 9.1 and 9.2 for a single 

line and double line to ground faults at the middle of the line. The 

occurrence of such faults gives an increase in the peak value of voltage 

(25%-35%) on the unfaulted phase or phases. This increase in voltage 

cannot be shown in case of transposed line due to the assumption of equal 

coupling between phases. The effect of transposition in the faulted 

phase can also be shown in Figure 9.3. This figure shows the frequency 

spectra of the transient sending-end voltage for single line to ground 

fault at the middle of the line. The effect of transposition in the case 

of three-phase fault at the middle of the line can also be shown in 

Figure 9.4. 

These comparisons show that the unequal mutual coupling (untrans

posed line) could be very important in certain studies such as the design 

and insulation coordination of power apparatus and systems to avoid 

underestimation of overvoltages. 

Effect of generator model: 

Comparisons are made between the simple machine model and the full 

machine model for three-phase fault at different locations. The 
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waveforms of voltage and current show that the difference between these 

two models is insignificant when the fault was located at the receiving-

end of the line (load side). Figures 9.5a and 9.5b show the difference 

in the sending-end voltage and current waveforms of phase a due to 

three-phase fault at the middle of the line. The difference in the peak 

values of the sending-end voltage varies between 10% to 25%. This 

difference increases to 30% to 40% when the fault was located at the 

sending-end as shown in Figure 9.6a and 9.6b. The effect of the machine 

model on the frequency spectra of the transient sending-end voltage for 

three-phase fault at the middle of the line is also shown in Figure 9.7. 

These results indicate that the high frequency component, in case of 

full machine model, has a higher initial value and a higher rate of decay 

compared to those obtained using the simple machine model. Moreover, the 

frequency of the traveling wave is more than 10% lower (Figure 9.7). 

Such information is needed for setting traveling wave relays and a more 

than 10% error in this frequency will cause more than 10% overreach in 

the traveling wave relays operation. Therefore, it is necessary to 

represent the generator by its full model, particularly when the fault 

close to the source produces realistic current and voltage waveforms and 

to assure the realiability of a system for a given application. 

Effect of fault impedance: 

Most fault transient programs assume solid connection between the 

fault and the earth. This assumption may introduce an error due to the 

fact that at the fault location there is a resistance (arc resistance 

and line resistance) and an inductance (line inductance). Figure 9.8 



www.manaraa.com

134 

shows the difference between the sendlng-end voltage waveforms due to 

three-phase fault at the middle of the line with zero fault impedance 

and with a fault impedance (R^ = 10 ohm, = .1 mH). It is clear that 

the traveling wave components become progressively more damped when the 

fault impedance is included (due to the fault resistance). The fault 

impedance not only affects the magnitude of voltage but also affects the 

frequency of the traveling wave as shown in Figure 9.9. 

These results indicate that the assumption of zero fault impedance 

overestimates the magnitude of voltage and underestimates the magnitude 

of current. At the same time, the frequency of the traveling wave is 

about 10% lower. Such information is needed for accurate design of 

insulation, circuit breakers, and relays. 

Effect of line resistance: 

Many utilities still use the lossless line model for transient 

studies. Figures 9.10a and 9.10b contrast the case where losses are 

neglected with the case where they are included for three-phase fault. 

These comparisons show that in case of lossy line model, the high 

frequency components are highly attenuated due to the damping effect of 

the line resistance. Therefore, the difference between the two wave

forms (Figure 9.10a) started with 10% to 40% in the first half cycle and 

then increased to 80% to 95% in the second half cycle. The lossless 

line model gives incorrect results in the transient solution as shown in 

Figure 9.11. 

Based on these results, the lossless line model greatly overesti

mates the voltage and it cannot be used in insulation design for 
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economic reasons. It also might introduce misleading results in voltages 

and currents with consequent effects on system reliability. 

Effect of frequency variation of line parameters: 

Most methods that use time-domain solutions are based on the 

assumption of frequency independent line parameters. Figure 9.12 shows 

the waveforms of the sending-end voltage of phase a in cases of frequency-

dependent and independent line parameters. The variation of these 

parameters with frequency increases the damping effect on the high 

frequency components. Therefore, neglecting such variation would under

estimate the rate of decay of the high frequency components. Consequently, 

this assumption leads to higher insulation levels due to the overestima-

tion of the high frequency components of voltage. 

Skin effect: 

The results showed that the skin effect is insignificant in transient 

analysis as shown in Figure 9.13. However, the skin effect may be con

sidered for larger line conductors. 

Other results and waveforms were obtained for different studies such 

as; effect of fault location, effect of load, effect of generator size, 

and effect of type of fault. 

Effect of fault location: 

Figures 9.14a and 9.14b show the effect of fault location on tran

sient waveforms for three-phase faults at 100 miles and 50 miles from the 

sending-end bus. The magnitude of voltage decreases and the magnitude 

of current Increases as the distance between the fault location and the 
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sending-end bus is decreased. Table 1 shows the effect of fault 

location on the magnitude of sending-end voltage (phase a) at the 

dominant frequency for three-phase fault at different locations. 

Taken together, Figures 9.14 and Table 1 show a trend in the 

relationships between the distance from the generator to the fault, and 

the amplitudes of the high frequency components in the voltage and 

current waveforms. In order to interpret this, it is necessary to 

recall that the resistance per unit length increases rapidly with 

frequency (see Figure 3.3) and to note that the nearer the fault, the 

higher the dominant frequency is. The net result is that even though the 

distance is halved (100 miles to 50 miles) the dominant frequency 

component is attenuated by a factor of about 4. 

Table 1. Effect of fault location 

Fault location Magnitude of Dominant Magnitude of 
measured from sending-end voltage frequency sending-end voltage 
the sending-end at 60 Hz at dominant frequency 

150 miles 1.23 pu 450 Hz .2117 pu 

100 miles 1.07 pu 630 Hz .1909 pu 

50 miles .7887 pu 1080 Hz .0471 pu 

25 miles .5547 pu 1605 Hz .02648 pu 

Effect of load: 

Figures 9.15a and 9.15b contrast the case where the system was under 

heavy load and the case where the system was under light load for 
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three-phase fault. These figures show that the pattern of voltage and 

current waveforms were not significantly affected by load condition, but 

the magnitudes were different. 

Effect of generator size; 

As a larger generator has a smaller inductance, using the simple 

machine model concept, the reflection coefficient of the incident wave 

will be higher. Consequently, when a 615 MVA generator was used, the 

high frequency components of the current waveform were higher than the 

corresponding waveform for a 160 MVA generator. The traveling wave 

components of current propagated into the source do not cause significant 

voltage drop if the source impedance is small (for large generator size). 

These results are depicted in Figure 9.16a and 9.16b. 

The same argument applies when a full generator model was used, but 

the difference between the waveforms was greater. In general, the 

larger generator has smaller values of the inductance matrix. This in 

turn affects the magnitudes of dominant frequency as well as the rate of 

decay. The results obtained by using the full machine model are shown in 

Figures 9.17a and 9.17b. 

Effect of type of fault; 

The results show that the high frequency components of voltage and 

current vary according to the type of fault. Some of these results are 

shown in Table 2. The waveforms shown in Figure 9.18 were used to compare 

line to line fault with double line to ground fault on phases b and c 

at the middle of the line. The waveform due to double line to ground 
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fault has higher high frequency components than the waveform due to line 

to line fault. In general, any fault to ground involves two modes; the 

earth mode and the faulted phase mode. 

Table 2. Comparison between 3LG fault and sLG fault at the middle of 
the line 

Type of fault Dominant frequency S.E. voltage of phase a 
at this frequency 

Three-phase fault (3LG) 630 Hz .1909 pu 

Single line to ground fault 
on phase a (sLG) 645 Hz .08173 pu 
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untransposed line 
transposed line 
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Figure 9.1. Effect of transposition on S.E. 
voltage for SLG fault (a) 
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untransposed line 
transposed line— 

2.L.G. FAULT AT Xl= 100 mi 
SEND. END. VGL Vfl (D 
SEND. END. V6E VB A 
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2.so 
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Figure 9.2. Effect of transposition on S.E. 
voltage for eLG fault (b-c) 
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Figure 9.3. Effect of transposition on the frequency 
spectra for SLG fault (a) 
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Figure 9.4. Effect of transposition on S.E. voltage for 3LG fault 
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Figure 9.5a. Effect of generator model on S.E. voltage for 3LG fault 
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Figure 9.5b. Effect of generator model on S.E. current for 3LG fault 
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Figure 9.6a. Effect of generator model on S.E. voltage for 3LG fault 
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Figure 9.6b. Effect of generator model on S.E. current for 3LG fault 
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Figure 9.7. Effect of generator model on frequency spectra 
of S.E. voltage for 3LG fault 



www.manaraa.com

^a 

< 

S 
à-

i 
d-

g 
d-

V) 

o 

-j*-

8 

i THREE PH. F.RT XI = 100 mi 
1 SEND. END. VGE VR 

1 zero fault impedance 

! . » with fault imnedance 
1 l\ '1 h i 

1 1 
Q .QQ Q.4Q Q.eo 1.20 1.60 2.00 2.HO 2.80 3.20 3.60 

TIKE IN SEC. (5cio-«J 

M 
f-
00 
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Figure 9.9. Effect of fault impedance on frequency 
spectra of S.E. voltage for SLG fault 
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Figure 9.10a. Effect of the line losses on S.E. 
voltage for 3LG fault 
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Figure 9.10b. Effect of the line losses on S.E. 
current for 3LG fault 
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Figure 9.11. Frequency spectra of the transient S.E. voltage for both models 
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Figure 9.12. Effect of frequency variation of line parameters on S.E. voltage for 3LG fault 
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Figure 9.13. Skin effect on S.E. voltage for 3LG fault 
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Figure 9.14a. Effect of fault location on S.E. voltage for 3LG fault 
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Figure 9.14b. Effect of fault location on S.E. current for 3LG fault 



www.manaraa.com

; 

THflEE PH. F.AT XI = 100 mi 
SEND. END. V6E VR 

• heavy load 
light load 

Q.QQ 
' HKE I'N-'kc. 

-I 1 
2.ua 2.80 

(*10"'J 

—I— 
3.20 

—1 
3.60 

Ln 

Figure 9.15a. Effect of load on S.E. voltage for 3LG fault 
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Figure 9.15b. Effect of load on S.E. current for 3LG fault 
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Figure 9.16a. Effect of generator size on S.E. voltage for 3LG fault (simple machine models) 
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Figure 9.16b. Effect of generator size on S.E. current for 3LG fault (simple machine model) 
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Figure 9.17a. Effect of the generator size on the S.E. voltage for 3LG fault (full machine model) 
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Figure 9.17b. Effect of the generator size on the S.E. current for 3LG fault (full machine model) 
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Figure 9.18. Effect of type of fault on S.E. voltage 
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XII. APPENDIX A; NUMERICAL EXAMPLE 

A fault study of the general transmission system on the digital 

computer has been carried out using both the simple and the full model 

of the synchronous generator. The system parameters have been carefully 

selected to be of most practical value. The one-line diagram of the 

system to be studied is given in Figure 12.1. The system data are taken 

from references [27]., [29], and [35]. 

R.E. S.E. 

transmission line 

si generator 

transformer 

Figure 12.1. An illustrative transmission system 

Transmission Line: 

In this example, a three-phase transmission line with flat configura

tion and a ground wire is used as shown in Figure 12.2. The distances 

between conductors are shown in that figure in ft. 

Conductors are AL, ACSR 26/7, KCmi/Al 636 

Line length = 200 miles 

Voltage = 220 KV 

Conductor diameter = .99" = .0825 ft. 

Conductor resistance at 50°c = .1618 ohm 

GMR = .0335 ft. 
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Ground wire; steel, diameter = .001 ft., resistance = 4 ohm/mi., 

and GMR = .001 ft. 

GROUND WIRES 

i \ 

I-2 0 '  20'— 

T 
1 0 '  

5 5 '  

Figure 12.2. Transmission line configuration 

Synchronous generator: 

The following data are from reference [29] which is based on a 15 

160 MVA system 

Rated MVA = 160 MVA , .85 p.f. 

Rated KV = 15 KV 

r ̂ = 

X- -

XV = 

x; = 

X = 

X = 

.000742 pu 

1.651 pu 

.185 pu 

.245 pu 

1.7 pu 

.185 pu 

.38 pu 

^d 

HT = 

.023 sec 

.98 sec 

.033 sec 

5.9 sec 

.023 sec 

.51 sec 

T'^ = .076 sec 
qo 

do 

^do 

T ̂  = 
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X = 1.64 pu = .54 sec 
q qo 

r = .0011 pu = .054 pu 
a y 

x% = = .15 pu Xq =1.526 pu 

= .016 pu = .0131 pu 

Xg = .115 pu Xjj = 1.605 pu 

x^ = .1 pu 

x^ = K = KRp = = 1.7 - 1.5 = 1.55 pu 

x^q = K Mp = 1.64 = .15 = 1.49 pu 

If represents the new Impedance in the new set of data and 

Z^ld represents the old impedance in the old set of data, in order to 

adapt the foregoing data to a 15 KV, 200 MVA system, the generator 

parameters must be changed in the following way: 

(15)^ 
Zfaase the generator side = -^gg— = 1.125 ohm 

L^ase the generator side = = 2.9841x 10 ^ H, 

x^ = 1.7 (200/160) = 2.125 pu = 6.3412x10"^ H. 

X = 1.64 (200/160) = 2.05 pu = 6.1174x10"^ H. 
q 

r = .0011x 1.25 = .001375 pu = .001547 ohm 
a 

x^ = KMjj = KMp = = 1.55 X (200/160) = 1.9375 pu = 5.7817 x 10 
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\q " " 1.49 X (200/160) = 1.8625 pu = 5.5579 xlO~^ H. 

x^ = .1 X (200/160) = .125 pu = .373x 10"^ H. 

Vp = .000742 X (200/160) = .0009275 pu = 1.0434x 10"^ ohm 

Xp = 1.651 X (200/160) = 2.06375 pu = 6.15844x 10"^ H. 

Lg = 1.605 X (200/160) = 2.00625 pu = 5.98685x 10"^ H. 

= 1.526 X (200/160) = 1.9075 pu = 5.6922x 10"^ H. 

= .0131 X (200/160) = .016375 pu = .018422 ohm 

fq = .054 X (200/160) = .0675 pu = .07594 ohm 

Transformer: 

Three-phase 

15/220 KV 

200 MVA 

^1 = X2 = x^ = .1 pu 

r^ = rg = r^ = .0015 pu 

Load: 

Load power = 160 MW, unity power factor 

Load bus voltage = 200 KV 

Fault impedance: 

r^ = 10 ohm 

Lg = .1 m.H. 
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System base: 

Base KV = 220 KV 

Base MVA = 200 MVA 

Base synchronous speed = 377 rad/s. 

Base impedance = (KV)^/MVA = (220)^/200 = 242 ohm 

Base current = 
220 X 10 

/3x 242 

3 
= 524.86 Anip. 

For studying the effect of the generator size, another set of generator 

data was used. This set of data for a larger generator size is based on 

15 KV and 615 MVA as in reference [29]. 

Generator rating =615 MVA and 15 KV 

p.f. = .975 

xj" = .23 pu 

Xj = .2993 pu 

X = .8979 pu X .12 pu 
,0 

~ .2847 pu x„ = .74 pu 
4 f 

x' = .646 pu Tj =7.4 sec 
q do 

Xq = .646 pu rq = .1 pu 

r = .001 pu = .545 pu 
a V 

X = .2396 pu r^ = .072 pu 

r^ = .004 pu Xp = .698 pu 

Xg = .298 pu tp = .1 pu 
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= KMjj = KMp = = .8979 - .2396 = .6583 pu 

X. = KM^ = .646 - .2396 = .4064 pu 
AQ Q 

By transforming the above data to be based on 15 KV and 200 MVA as 

Xj = .8979 X (200/615) = .292 pu = .87145x 10"^ H. 

Xq = .646 X (200/615) = .21 pu = .627x 10"^ H. 

r^ = .001 x (200/615) = .00033 pu = .00037 ohm 

XQ = .12 X (200/615) = .039 pu = .11638x 10"^ H. 

XAJJ = KMp = KMp = = .6583 x (200/615) = .214 pu = .6386x lO"^ H. 

x^Q = KMq = .4064 X (200/615) = .1322 pu = .3945 x10"^ H. 

r^ = .1 X (200/615) = .0325 pu = .03656 ohm 

X = ,545 X (200/615) = .1772 pu = .5288x 10"^ H. 

r^ = .072 X (200/615) = .0234 pu = .02633 ohm 

x^ = .698 X (200/615) = .227 pu = .6774x 10"^ H. 

Tp = .1 X (200/615) = .03252 pu = .0366 ohm 

Xp = .74 X (200/615) = .24065 pu = .71812x10"^ H. 
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XIII. APPENDIX B: FAULT TRANSIENT PROGRAM 
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c 
c ************************************************************** 
c * * 
c * FAULT TRANSIENT PROGRAM FOR UNTRANSPOSEO TRANSMISSION LINE • 
C • * 

C ************************************************************** 
c 
C THIS PROGRAM 15 DESIGNED FOR COMPUTING FAULT TRANSIENT VOLTAGES AND 
C CURRENTS AND IT'S WAVEFORMS AT THE FAULT LOCATION AND AT THE SEND. 
C END OF THE TRANSMISSION LINE BY USING THE CLASSICAL MODEL OF THE 
C GENERATOR FOR ALL TYPES OF FAULT. 
C TYPES OF FAULTS : 
C TYPE 1. LLL THREE PHASE FAULT. 
C TYPE 2. LL LINE-TO-LINE FAULT ON PHASES B AND C. 
C TYPE 3. LLG DOUBLE-LINE-TO-GROUND FAULT ON PHASES 8 AND C. 
C TYPE 4. LGF SINGLE-LINE-TO-GROUND FAULT ON PHASE A. 
C THE FOLLOWING ARE THE INPUT DATA TO BE READ IN 
C 
C *************************************************** 
C * * 
C • READ(5,9)M.N,NI,NCASE,NFT * 
C * READ(5.10)RF,XLF,DW,DAA.DWW * 
C * READ(5,10)DAB,DAC,D3C.DS.DWS,RA * 
C * READ(5.1G)HAA.HA8,HAC,HWW.HAW,HBW * 
C * READ(5,1Q)DW,DAW.DBW,DCW,XL.X1 * 
C * REAO(5»10)RO*GTXS.GTXM.ROP«RW.ZBASE * 
C * READ(5,10)(VS2(11,1=1,3) * 
C * READ(5.iO}(CS2(I).1=1*3) * 
C * 9 FORMAT15I10) * 
C * 10 FORMAT(6El3.6) * 
C * * 
C *****»***§*^;* **************** *•*•*•*•**••*******••» 
C 
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c NOTATION USED IN THE PROGRAM 
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C  

NCASE=NUMBER OF CASES TO BE STUDIED 

NFT=TYPt OF FAULT NUMBER 
C RF=FAUl_T RESISTANCE IN PU. 
( XLF=FAULT INDUCTANCE IN H./8ASE IMPEDANCE 

C DAA=OUTER DIAMETER OF THE CONDUCTOR IN FT. 
C OWW=OUT£R DIAMETER OF THE GROUND WIRE IN FT. 
C DAB,OAC,&OBC ARE THE DISTANCES BETWEEN CONDUCTORS IN FT. 
C DS&DWS ARE THE SELF G.M.D. OF THE CONDUCTOR AND THE GROUND WIRE. 
C RA=RESISTANCE W THE CONDUCTOR IN OHM PER MILE. 
C HAA,HAB,HAC,HWW,HA*&HB* ARE THE DISTANCES BETWEEN THE CONDUCTORS 
C A.BtC&W AND THEIR IMAGE. 
J RW=RESISTANCE OF THE GROUND WIRE IN OHM PER MILE. 
C OAW,DBW&OCW ARE THE DISTANCES BETWEEN THE GROUND WIRE AND THE 
C CONDUCTORS A.B&C IN FT. 
C XL=TRANSMISSION LINE LENGTH IN MILE. 
C X1=DISTANCE BETWEEN THE FAULT LOCATION AND THE SENDING END BUS. 
C RO=AVERAGE RESISTIVITY OF THE EARTH. 
C GTXS=SELF IMPEDANCE OF THE GENERATOR AND THE TRANSFORMER IN PU. 
i GTXM=MUTUAL IMPEDANCE OF THE GENERATOR AND THE TRANSFORMER IN PU. 
C ZBASE=BASE IMPEDANCE 
C ZBG=EASE IMPEDANCE IN THE GENERATOR SIDE. 
C. 

C THE SUBROUTINES USED IN THE MAIN PROGRAM 
C **************************************** 
C 

C 1. SUBROUTINE CLEQTIC) TO FIND THE INVERSE OF A COMPLEX MATRIX. 
C 2. SUBROUTINE (EIGCC) TO FIND THE EIGENVALUES AND THE EIGENVECTORS 
C OF A COMPLEX MATRIX. 
C 3. SUBROUTINE (ABCD) TO FIND THE CONSTANTS A,B,C6D OF THE TRANSM. 

LINE ÏN STEADY STATE CCNDITION. 
C 4. SUBROUTINE (VRIRl TO FIND THE VOLTAGES AND THE CURRENTS AT ANY 
C POSITION OF THE TRANSMISSION LINE IN STEADY STATE CONDITION. 
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c 5. SUBROUTINE (VFT) TO FIND THE PREFAULT VOLTAGE IN FREQ. DOMAIN. 
C 6. SUBROUTINE (LLLF) TO FIND THE VOLTAGE AT THE FAULT POSITION FCR 
C THREE OHASE FAULT. 
C 7. SUBROUTINE (LLF) TO FIND THE VOLTAGE AT THE FAULT POSITION FOR 
C LINE TO LINE FAULT. 
C 8. SUBROUTINE (LLGF) TO FIND THE VOLTAGE AT THE FAULT POSITION FDR 
C DOUBLE LINE TO GROUND FAULT. 
C 9. SUBROUTINE (LGF) TO FIND THE VOLTAGE AT THE FAULT POSITION FOR 
C SINGLE LINE TO GROUND FAULT. 
C 10. SUBROUTINE (AIFFT) TO FIND THE VOLTAGES AND THE CURRENTS IN THE 
C TIME DOMAIN BY USING THE INVERSE OF THE FAST FOURIER TRANSFORM. 
C 
C THE MAIN OROGRAM 
C **************** 

COMPLEX Z(*.4),ZABC(3,3),YABC(3,3),A(3,3).S(3,3),QI(3.3), -J 
«GAMAK 3)•SI(3.3)«a(3.3)«Bl(3>«A2(3)*B2(3)*AtQI(3«3).A2QI (3.3), ^ 
*QB2QI(3.3).SAISI(3.3),SA2SI(3.3),0A1QI(3.3),QA2QI(3.3), 
*A1SI(3,3).T11(3,3).T31(3,3),T1(3,3),T3(3,3).T41(3,3),T2(3,3) 
COMPLEX T4(3,3).TVRI ( 3 , 3 ) , VR ( 3 ) , CR ( 3 ) . VS ( 3 ) ,CS( 3) .VSAK 1 024) , 
• CSAl(1024).CSai( 1024 ) ,CSC1( 1024) ,VFA(1024),VFB( 1024) ,VFC( 1024), 
*T2I(3,3),T4I(3,3),T2IT1(3,3),T4IT3(3,3),ZT23(3,3).T2143(3,3), 
*A2SI(3,3).QBIQI(3.3),VSC1(1024),T21(3«3),A1(3),GAMA(3) 
COMPLEX CFB(I 024),CFC(1024),TVR(3,3),CFA(1024),VSBl( 1024), 

*APL( 3,3) ,BPl-( 3,3) ,CPL(3,3) ,AS(3,3),BS(3,3) , AJFS, VS2( 3) ,U1 (3,3) , 
»ZGTS(3,3),ZF{3.3),ZL0(3,3),YP(3,3),VSP(3),CSP(3),ZP(3,3) ,CS2<3), 
*CMPLX,CEXP,CSQRT,EV(3,3),ZN,CLMDA(3).C(3,3),TI(J,3),CFFA 
COMPLEX VRo(3),CRP(3),CSS(3.3).VF(3),0PL(3,3),OSS(3,3),ZABCW(4,4), 

»SIZ(3,3),GSIZ(3,3),ZO(3,3).ZOI(3,3)«B1QI(3,3),3 201(3,3).T22(3,3), 
*T42( 3,3),QIZ0I(3,3),B1QIZI(3,3), 8201 ZI(3,3),THl(3,3),T311(3,3), 
*CFFB.CFFC,ZFT,CWK(129) 
DIMENSION IWKI8),ST(129),CT(129),FREQU(129),AMAG(129) 
DIMENSION WA(18),VRM(3),TIME(1024).»K(30),CCSl{1024),CA(3,3), 

*CRM(3),PHVR(3),PHCR(3),VSPM(3),PHVS(3).CSPM(3),PHCS(3), 
*CCF( 1024 ) ,VAS1( 1024) ,VBSl { 1024),VC31 ( 1024) ,CASl( 1024),CBS1(1024), 
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*VAF{ 1024),V3F[ 1024),VCF{ 10 24)tCAF( 1024),C&F( I 324),P{4»4) ,PABC(3,3) 
PI=3.1415927 
*0=120.*PI 
READ(5.9)M,N,NI,NCASe.NFT 
READ I 5.10)RF.XLF.O*,D\A,3W*,ZBG 
READ(5,10) OAB*DAC*OBC«OS,OWS,RA 
REA3(5, I 0)HAA,HAB,HAC»HWW,HA\V.HBW 
REA0(5»10) RW,0AW.DBW»0CW,XL,X1 
READ(5,10) RO,GTXS,GTXM,ROP,RW,ZBASE 

9 FORMAT(5IIO) 
10 FORMAT{6E13.6) 

X2=XL-X1 
C 
C ************************** 
C * STEADY STATE CONDITION * 
C ************************** 
c 
C COMPUTE THE IMPEDANCE AND THE ADMITTANCE MATRICES. 

RPA=RA+RDP 
RPW=R@+RDP 
Wi_AA = . 12 134*ALOG<2790/DS) 
WLAB=.12134*ALaG(2790/DAB) 
WLAC=.12134*ALQG(2790/DAC) 
WLBC=.12134*ALOG(2790/D8C) 
WL5=.12134*AL0G(2790/DWS) 
WLAG=.12134*ALOG(2790/OAW) 
WLBG=. 12 134*Al_0G(2790/DBW) 
WLCG=.12134*ALOG(2790/DCW) 
ZABCWC1,1)=CMPLX(RPA,WLAA)/Z8ASE 
ZABCW(1,2)=CMPLX(ROP,WLAB)/ZBASE 
ZABCW(1,3)=CMPLX(RDP,WLAC)/ZBASE 
ZABCW( 1 ,4)=CMP1_X(R0P,WI_AG)/Z3ASE 
ZA8C*(2,2)=ZA8CW(1,1) 
ZABC«(2. 3) =CMPLX(RDP,Wl_BC)/ZBASE 
ZABCV*( 2. 4)=CMPLX(R0P,WLBG)/ZBASE 

00 
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ZA3CW(3,3)=ZA8CW(1,1) 
ZA8CW( 3,4)=CyPLX(RDa ,\NLCG)/Z0ASE 
ZA8CW(4,4)=CMPLX(R^W »WLG)/ZBASE 
ZP( 1 , 1 ) =ZABCW(1 , 1 ) -ZABCWII ,4)*ZABC*( 1 , 4) /ZABCW( 4 ,4 ) 
ZP( 1 ,2) =ZABCW(1 ,2) -ZABCWl1 ,4)*ZABCW( 2, 4) /ZABCW( 4 ,4) 
ZP( 1 .3) =ZABCW(1 ,3) -ZABCW{1 ,4)*ZABCW( 3, 4) /ZABCW( 4 ,4) 
ZP( 2 ,2) =ZA3CW(2 ,2) -ZABCW(2 ,4)*ZABC*( 2, 4) /ZABCW( 4 ,4) 
ZP(2 .3) =ZA8CW(2 ,3) -ZABCW(2 ,4)*ZABCW( 3, 4) /ZABC*( 4 ,4) 
ZP(3 .3) =ZABCW(3 ,3) -ZABCW(3 ,4)*ZABCW( 3, 4) /ZABCW( 4 ,4) 
ZP(2.1)=ZP(1,2) 
ZPC3.1)=ZP{1,3) 
ZP(3,2)=ZP(2,3) 

C CALCULATION OF THE CAPICITANCE OF THE TRANSMISSION LINE. 
C CACULATION OF MATRIX 'P* IN MI/MF 

P( 1, 1 ) = 11. 185*ALOG(2*HAA/DAA 
PI 1 , 2 ) = 11. 18S*AL0G(HAB/DAB) 
P( 1 , 3) = 11. 185*AL0G(HAC/DAC) 
PC 1, 4) = 11. 185*AL0G(HAW/DAW) 
P( 2, 4J = 1 1 . 185*AL0G{HBW/DBW) 
P( 2, 2) =P( I , 1 ) 
PI 2, 3) =P( 1 ,2) 
=»( 3, 3) =P{ 1 , 1 ) 
P( 3, 4) =P( I ,4) 
P< 4, 4) = 1 1 . 185*AL0G(2*H**/D*W 
PA ac( I , I ) = 3(1,1)-P(1,4)*P(1, 
PABC(I,2)=P(1,2)-P(1,4)2,4)/P(4,4) 
PABC(1,3)=P(1,3)-P(1,4)*P(3,4)/P(4,4) 
PABC(2,2)=P(2,2)-P{2,4)*P(2,4)/P(4,4) 
PASC(2.3 >=P(2,3)-P(2,4)*P(3,4)/P(4,4) 
PABC(3,3)=P(3,3)-o(3.4)*P(3,4)/P(4,4) 
PABC(2,1 )=PABC(1,2) 
PABC(3,1)=PABC(1,3) 
PA8C(3,2Ï=PABC(2,3) 

C FIND THE INVERSE OF MATRIX 'P' AND THAT IS MATRIX »C« IN MIC.F./MI 
DO 401 1=1,3 
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i)0 402 J = l,3 
Ul (I .J>=CMFLX{3ABC{ I ,J) .0.0) 

402 C(I.J)=(0.0.0.0) 
401 C(I,I)=(1.0,0.0) 

CALL LEQTlC(Ul.3.3.C.3,3.0.1fc A, 1ER) 
IF(IER.NE,0)GO TO 11II 

C TO FIND •€• IN FARAD AND •YP• IN P.U. 
00 403 1=1.3 
00 403 J=1.3 
CAlI . J)=-CABS(C( I.J) )*l.E-06 
CA(I,I)=CAaS(C(I.I))#l.E-06 
YP(I.J)=CMPLX(0.0.CA(I,J)»WO)*ZBASE 

403 CONTINUE 

C LOAD IMPEDANCE MATRIX AND CALL IT (ZLO) 
DO 211 1=1.3 
READ(5.10)IZLD(I,J),J=1,3) 

211 CONTINUE 

C READ THE VOLTAGES AND CURRENTS AT THE R.E.OF THE TRANSMISSION LINE. 
REA0(5,10)CVS2{I),1=1,3) 
READ(5.10){CS2(1).1=1,3) 

C CALL SUBROUTINE TO FIND THE CONSTANTS A.B.C.&D AT THE SENDING END. 
CALL ABCD(XL,ZP,YP,APL.BPL.CPL.DPL) 

C CALL SUBROUTINE TO FIND THE CONSTANTS A,B,C,&0 AT THE FAULT LOC. 
CALL ABCD{X2,ZP,YP.AS,BS.CSS,DSS) 

C CALLL SUBROUTINE TO FIND VOLTAGES AND CURRENTS AT THE FAULT POSIT. 
CALL VRIR(VS2,CS2.AS,aS.CSS.DSS,VRP.CRP.VRM.CRM.PHVR.PHCR) 
WRITE(6,363) 
FORMATC•0«,lOX,«PREFAULT VOLTAGES & CURRENTS AT XI*.//,lOX.******* 

*****************************#*•»//, 12X.•VRM* ,21X.* PHVR » « 20X. 
»*CRM*,2!X,«PHCR*) 
DO 367 1=1.3 
WRITE(6,368) VRM(I).PHVR(I).CRM(I),OHCR(I) 
FORMATf'O*.10X,4(£I3.6.11X)) 
CALLL SUBROUTINE TO FIND VOLTAGES AND CURRENTS AT THE S.E. 
CALL VRIR(VS2,CS2.APL.BPL.CPL.0PL.VSP.CSP.VSPM.CSPM.PHVS.PHCS) 

00 
o 

363 

367 
3 63 
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WRITE(6.36l) 
361 FORMAT (*0',10X,"SENDING PREF AUl_T CONDI TION",//,10X.*************** 

*******&*****?,,//,12X.•VSPM" ,20X,•PHVS»•20X t•CSPM* ,20X,* PHCS* ) 
00 366 1=1,3 

366 tfRITE{6,363) VSPMtI)*PHVS(I),CSPM(I),PHCS(I> 
C 
c *********************** 

C * TRANSIENT CONDITION * 
C *********************** 
C 

DW=OW*PI 

DWCl1=DW*CA(1,1) 
OtfC12=DW*CA(1,2) 
DWC13=DW*CA(1.3) 
DWC22=DW*CA<2,2) 
D*C23=D**CA(2,3) 

DWC33=DW*CA(3,3) 
DO 1 IK=1,N 

IJ=2*IK-I 
AJ=FL0AT(IJ)/2.0 
W=DW*AJ 
FREQ=*/(2.0*PI) 

C GENERATOR AND TRANSFORMER IMPEDANCE MATRIX AND CALL IT <ZGTS) 
GTLS=GTXS/WO 
GTLM=GTXM/*0 
DO 5 1=1,3 
00 7 J=1,3 

7 ZGTS(I,J)=-CMPLX((D**GTLM),(**GTL4)) 
5 ZGTSI1,1»=CMPLX((OW*GTLS),{W*GTLS)) 

C INPUT FAULT IMPEDANCE MATRIX 
DO 15 1=1,3 
DO 20 J=1.3 

20 ZF(1,J)=(0.0,0.0) 
15 ZF(I,I)=CMPLX{{RF+OW*XLF),**XLF) 

C COMPUTE THE IMPEDANCE AND ADMITTANCE MATRICES OF THE T.L. 
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COMPUTE THE RESISTANCE OF THE CONDUCTORS BY BESSEL FUNCTION. 
(A) FOR THE THREE PHASE CONDUCTORS 
RMA=,063ô*SQRT(FREQ/SA) 
3ERMR=l.-(RMA)**4/64. 
BERMRP=-(RMA)**3/16. 
BEIMR=<RMA)**2/4. 
BEIMRP=CRMA)/2-
RAA=RA*RMA/2.*( (BERMR^BEIMRP-BE IMR*3ERMRP)/(SERMRP»*2+BEIMRP»»2J) 
IB) THE RESISTANCE OF THE GROUND WIRE 
RM*=.0636*SQRT(FREQ/RW) 

BERMW=l-<RMW)**4/64. 
BERMWP=-(RMW)**3/16« 
8EIMW=(RMW)**2/4. 
BEZMWP=(RMW)/2. 
RW*=RW*RM*/2.*((BERM**8EIMWP-aEIMW*BERMWP)/(8ERM*P**2+BEIM*P**2)) 
R0=l«588*.1E-02*FREQ 
R=RAA+RO 
DE=DW*.3219E-03»AL0G(2160.*SQRT(R0/FfiEQ)) 
DWL=DE-.3219E-03*ALOG(DS)*0* 
DWLAB=DE-.3219E-03*ALOG(OAS)*DW 
DWLAC=DE-.3219E-03*AL0G(DAC)*DW 
DWLBC=OE-« 3219E-03«ALOG(OBC Ï *0* 
OWLG=OE-.3219E-03*ALOG(OWS)*DW 
DWLAG=3E-.3219E-03*ALCG(DAW)*D* 
OWLBG=DE-.3219E-03»ALOG{DBW)*DW 

0WLCG=0£-.3219E-03*ALOGtOCW)*0* 
Z(1•1)=CMPLX((R+D%L),DWL*AJ)/Z8ASE 

Z(I»2)=CMPLX((RO+OWLAB),DWLAB*AJ)/Z3ASE 
Z(1,3)=CMPLX((RD+OWLAC).DWLAC*AJ)/ZBASE 
Z(1»4)=CMPLX<{RD+DWLAG),D*LAG*AJ)/ZBASE 
Z(2.2)=Z(1,1) 
Z(2,3)=CMPLX((RD+DWLBC).OWLBC*AJ)/ZBASE 
Z(2,4)=CMPLX{(RD+DWLBG),DWLBG»AJ)/ZBASE 
Z<3.3)=Z(1,1) 
Z(3»4)=CMPLX((RO+DWLCG).DWLCG*AJ)/ZBASE 
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40 

45  

Z(4.4)=CMPLX((RWW+RD+OWLG),DWLG*AJ)/Z8ASE 
ZABC{l,l)=Z(l,l)-Z(l,4)*Z(l,4)/Z(4,4) 
ZABC(1.2)=Z(1,2)-Z(1,4)*Z(2,4)/Z(4,4) 
ZABC(l,3)=Z(1.3)-Z(l,4)*Z(3.4)/Z(4,4) 
ZABC(2,2)=Z(2,2)-Z(2,4)*Z(2,4)/Z(4,4) 
ZA8C(2,3)=Z(2,3)-Z(2,4)*Z(3.4)/Z(4,4) 
ZABC(3,3)^^(3,3)-Z(3,4)*Z(3,4)/Z(4,4j 
ZABC(2,I)=ZABC(1,2) 
ZABC(3,1)=ZABC(1,3) 
ZABC(3.2)=2A8C(2,3) 
YABC(I,1)=CMPLX(DWClI,DWC11*AJ> *ZBA3E 
VABCi1.2)=CMPLX{DWC12,OWC12*AJ)*Z8ASE 
YABCt 1«3)=CMPLX(QVIC13,0WC13*A J) •ZBASE 
YABC(2,2)=CMPLX(DWC22,DWC22*AJ)*ZBASE 
YA8C(2,3)=CMPLX(DWC23,D*C23*AJ)»Z8ASE 
YABC(3.3)=CMPLX(DWC33.DWC33*AJ)*Z8ASE 
YABC(2,i)=YABC(1,2) 
YABC(3,1)=YA8C(1,3) 
YABC(3,2)=YABC(2,3) 

MULTIPLY ZABC BY YABC AND CALL IT 'A' 
DO 40 11=1,3 
DO 40 JJ=l,3 
A(I I,JJ) = (0.0,0.0) 
DO 40 KK=1,3 
A(II,JJ)=A(II,JJ)+ZABC(II,KK)*YABC(KK,JJ) 
CONTINUE 
CALL SJBROUNTINE TO GET EIGENVALUES AND EIGENVECTORS 
CALL EIGCCC A,3,3,I.CLM0A,EV,3.WK,1ER) 
IF(WK(1).GT.100.0)GO TO 3333 
OO 45 1=1,3 
DO 45 J=l,3 
ZN=EV(1,J) 
EV(I,J)=EV(I,J)/ZN 
S(I,J)=EV(I,J) 

CONTINUE 

00 
u> 
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DO 50 1=1,3 
DO 50 J=1.3 

50 QI(I,J>=S(J,I) 

C TO GET THE MATRIX GAMA 
DO 55 1=1,3 
GAMA(I)=CSQRT(CLMDA(I)) 
GAMAI(I*=1.0/SAMA(I> 

55 CONTINUE 
C CALL THE SUBROUTINE TO GET THE THE INVERSE OF S AND CALL IT SI 

DO 60 1=1,3 
DO 65 J=l,3 
UK = ,J) 

65 SI(I.J)=(0.0,0.0) 
60 SI(I,I)=(1.0,0.0) 

CALL LEQT1C(UI ,3,3.31 ,3,3,0,VTA. 1ER) 
IF( 1ER.NE.0)60 TO 1111 
DO 70 1=1,3 g 
DO 75 J=1,3 
UKl * J)=QI( I , J) 

75 Q(I,J)=(0.0,0.0) 
70 Q(I,1) = (1 .0,0.0) 

CALL LEQTICIU1,3,3,0,3,3,0,WA,1ER) 
IF(IER.NE.O)GO TO 1111 

C FIND SI$ZA8C AND CALL IT SIZ 
DO 85 1=1,3 

DO 85 J=l,3 
SIZ<I,J3=(0.0,0.0) 
DO 85 K=l,3 
SIZ(Î,J)=51Z(I,J)+SI(I,K)*ZABC(K,J) 

85 CONTINUE 
C COMPUTE GAMA*SI*Z AND CALL IT GSIZ 

DO 90 1=1,3 
DO 90 J=l,3 

90 GSIZ(I,J)=GAMAI(I)*SIZ(I,J) 

C FIND ZO WHICH IS EQUAL TO (GAMAI*SI*Z*Q) AND CALL IT 20 
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100  

1  1 0  
105 

I 15 

120 
C 
c 
c 
c 
c 

DO 100 1-1,3 
00 100 J=l,3 
2Q(I«J)=(0.0,0.0) 

DO 100 K-l,3 
ZG{ I,J)=ZC( 1,J J +S( I ,K)*GSiZ(K,J) 

CONTINUE 

CALL SuaHGUTINE 70 GET THE INVERSE OF ZO AND CALL IT ZOl 
DC 105 1=1.3 

DC 110 J-1,3 
UK I . J)=ZO( I , J) 
ZOI(I,J)=(0.0,0.0j 
ZOI(I.1)=( 1 -0.0-0) 

CALL LEQTIC(01.3.3.Z01«3.3.O.ttA,1ER) 
IFfIER.NE«0)GO TO 1111 
CALCULATION OF THE TRANSMISSION LINE CONSTANTS 
DO 115 1=1.3 
A1(I)=.5*(CEXP(X1*GAMA(I))+CEXP(-Xl*GAMA(I))) 
A2(I) = .5*(CEXP(X2*GAMA(I))+CEXP(-X2*GAMA(I J)) 
d1< Ï ) = .5*(CEXP(X1*GAMA(I))-CEXP(-Xl«GAMA(I))) 
B2(1)=.5*(CEXP(X2*GAMA(I))-CEXP{-X2*GAMAlI))) 
CONTINUE 
DO 120 1=1.3 
DO 120 J=1.3 
AIQKI,J)=A1(I)*QI(I.J) 
A2QI( I.J) = A2(I)*QI(I.J) 
A15I(I.J)=A1(I)*SI(I,J) 
A2S I(I «J) = A2(I)*SI(I.J) 
BIQKI.J)=B1(I)*OI(I,J) 
B2GI(I.J)=82(I)»QI(I.J) 
CONTINUE 
GET S*(COSH.GAMAXlj*OI AND CALL IT (SAISI) 
GET S*CC0SH.GAMAX2)*QI AND CALL IT (SA2SI) 
GET 0*(CG5H.GAMX1)»Q1 AND CALL IT (QA1ÛI) 
GET 0*(C0Sh.GAMX2)*QI AND CALL IT (QA2QIJ 
GET Q»ISINH.GAMAXl)*QI AND CALL IT (QBIQI) 

M 
00 
Ln 
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OO 150 1=1.3 
OO 150 J=1.5 
OIZCl(I •J)-(0.0t0.0 ) 
OC 150 K=l,3 
OlZCIiItJ)=QIZOI(I«J)+QI{I.K)»ZOI(K,J) 

153 CONTINUE 
C COMPUTE SINM(GAMAXl)*(QI*ZOIj AND CALL IT (B13IZI) 
C COMPUTE 5INH{GAMAX2)»(QI*Z0I) AND CALL IT (B2ÛIZI) 

OO 155 1=1,3 
OO 155 J=l,3 
B1QIZI<1*J>=(0«0*0.0) 
B20IZI(I.J)=(0.0,0.0) 

155 CONTINUE 
OO 160 1-1,3 
DO 160 J=i,3 
BiaiZI<i.Jj=BlQIZI(I.J)+Bl(Ii«QlZOI(I . J} 
B2QIZI(I,J)=B20IZI(I.J)+B2(I)*aiZOI(I,J) % 

160 CONTINUE ^ 
C COMPUTE T11=0*(SINH.GAMAX1)*QI*Z0I 
C COMPUTE T31=Q*(SINH.GAMAX2)*ai*Z0I 

OO 170 1=1,3 
OO 170 J=l,3 
Tll(l,j)-(0.0,0.0j 
T31(l,J)=(0.0,0.0) 
DO 17 0 K=l,3 
Tll(I.J)=Tll(I,J)+0(I,K)*BiaiZI(K,J) 
T31{I,J)=T3l<I,J)+Q(I,K >*62GI ZI(K.J) 

170 CONTINUE 
C COMPUTE Till AND T3 11 WHERE: T111=ZGTS*T11 AND T311=ZL0*T31 

00 180 1-1,3 
DO 130 1,3 
Til1(I,J)=(0.0.0.0) 
T311(I.J)=(0.0,0.0) 
DO 180 K=l,3 
T111(I,J)=T111(I,J)+ZGTS(I,K)*T11(K,J) 
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T3l 1( I.J) = T311( I,J)+ZLG( I,K)*T31(K,J) 
18J CONTINUE 

JO 185 1-1.3 
DO 135 J=l,3 
T1(1.J)=3Al51{ I.J)+Ti1 I(I.J) 
T3( I.J)=SA2SI( I.J) + T3i I {i , J ) 

185 CONTINUE 
C CALL SUBROUTINE TO GET THE INVERSE OF T2 & T4,THEN CALL IT T2I 
C AND T4I. 

DO 190 1=1,3 
DO 195 J=l,3 
JH I. J)=T2( I tJ) 

195 T2I(I,J)={0.0.0.0) 
190 T2I(1•I)=(1.O.O.O) 

CALL LEQTlCCUl,3»3.T2I,3.3iO.WA,IER) 
IF(IER«NE.O>GO TO 1111 
DO 200 1=1,3 S 
DO 205 J = l,3 °° 

UK I, J) = T4C I.J) 
205 T4I([,J)=(0.0,0.0) 
200 T4J(1.1)=(1.0.0.0) 

CALL LEÛTIC<U1,3.3,T4I.3.3.0,WA,IERÎ 
IF< IE«.NE.0)G0 TO 1111 
DC 215 1=1,3 
DC 215 J=l.3 

T 2 I T 1 ( I 0 , 0 . 0 )  
T4IT3(I.J)=(0.0,0.0) 
DO 215 K=1.3 
T2IT1(I,J)=T2IT1(I,J)+T2I(I.K)*T1(K,J) 

T4iT3(I,J)=T4IT3(I.J)+T4I<I«K)*T3(K.J) 
T2143(I,J)=T2IT1(I.J)+T4IT3(I,J) 

2 15 CONTINUE 
C MULTIPLY ZF»T2143 AND CA _ IT ZT23 

DO 225 1=1,3 
DO 225 J=1.3 
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ZT23(I,J)={0.0,0.0) 
DQ 225 K-\,3 
ZT2 3{ I » JJ = ZT2 3( I,J)+ZF(I,K)*T2143(<,J) 
IF(I,EQ.J)GO TO 230 
TVRd . J)=ZT23t I.J) 
GO TO 225 

230 TVR(I.J)=l.0+ZT23(I.J) 
225 CONTINUE 

C CALL SUBROUTINE TO GET THE INVERSE OF TVR AND CALL IT TVRI 
DO 235 1=1,3 
DO 240 J=l,3 
U1(I•J) = TVR(I,J ) 

240 TVRI(I,JJ=(0.0.0.0) 
235 TVRI(I,I)=(I.0,0.0) 

CALL LEQTlC(Ut«3,3,TVRl•3.3.0,WA.1ER) 
IFCIER.NE.O)GO TO 1111 

C CALL SUBROUTINE TO FIND THE THREE PHASE VOLTAGES AT THE FAULT 
C LOCATION (VR). 

CALL VFT(VRM,W,WO,D*,PHVR,VF) 
IF{NFT.EQ.l)GO TO 1000 
IF(NFT.EQ.2)GO TO 2000 
IF(NFT.EQ.3)G0 TO 3000 
IF(NFT.EQ.4JGO TO 4000 

1000 CALL LLLFCTVRI.T2IT1,VF,VR) 
GO TO 5000 

2000 CALL LLF(VF.TI,ZF,VR) 
GO TO 5000 

3000 CALL LLGF(VF.TI,ZF,VR) 

GO TO 5000 
4000 CALL LGF(VF.TI,ZF,VR) 
5000 CONTINUE 

C FINDING THE THREE PHASE CURRENTS AT THE FAULT LOCATION (CR). 
DO 245 1=1,3 
CRd ) = (0.0,0.0) 

245 CONTINUE 
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CALL AIFFT(CSAl,M) 
CALL AIFFTiCSBl.M) 
CALL AIFFKCSCl iMJ 
CALL AIFFT(VFA,M) 
CALL AIFFT(VFB.M) 
CALL AIFFT(VFC,M) 

CALL AIFFT<CFA,M) 
CALL AIFFT(CFB.M) 
CALL AIFFT(CFC,M) 
DT=2.*PI/(DW*FL0AT(N)) 
N2=N/4 
DO 265 1=1.N2 

AJ=FLOAT(JJ) 
W0T=*0*DT*AJ 
AOT=DW*DT*AJ 
ATN=EXP{ADT)/PI 
AJFS=CMPLX(COS(PI*AJ/FLOAT(N)).SIN(PI*AJ/FLOATC N>)) 
VFA<I)=VFA(I)*AJFS 
VFS(Î Î=VFB{I)*AJFS 
VFC(I)=VFC(I)*AJFS 
CFA(I)=CFA(I)»AJFS 
CFS{I)=CFBCI)#AJFS 
CFC(I)=CFC(I)*AJFS 
VSAl(I)=VSAl(I)*AJFS 
VSBl(I)=VSB1(I)*AJFS 
VSCl(I)=VSCl(I)*AJFS 
CSAl(I)=CSA1CI)*AJFS 
csai(I)=CSB1CI)*AJFS 
CSCl(I)=CSC1(I)*AJFS 
TIME( I )=DT*FLOAT(I-1 J 
VAF(I)=ATN*REAL(VFA(I))+VRM(I)*COS(WOT+PHVR<1)) 
VBF(I)=ATN»REAL(VFB(I))+VRM(2)*COS(WOT+PHVR(2)) 
VCF(I)=ATN*REAL(VFC(I))+VHM(3)*COS(WOT+OHVR(3)) 
CAF{I)=ATN*REAL(CFA(I))+CRM(1)*COS(WOT+PHCR{1)) 
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CBF( I )=4TN»REAL(CF9( I ) )+CRM { 2 ) *C CS ( WOT •'^HCR ( 2 ) ) 
CCF(I)=ATN*qEAL(CFC(I))+CRM(3)*CCS{WOT+PHCR(3)) 
VASl ( I )=AT,M*aEAL(VSAl( I ) )+V5PM( 1 )*COS( WQT + PHVS( I I ) 
VBSl(I J =ATN*REAL(VSB1(I) )+VSPM(2)*COS(WOT + PHVS{2)) 
VCSl ( I ) = ATN*REAL( VSCK I ) )+VSPM(3)*C0S( WOT + PHVS( 3) > 
CASl(I> = ATN*REAL(CSA1(I) )+CSPM{1}*C05(*OT+PHCS( 1 ») 
CBSi(I)=ATN*REAL(CSB1(I))+CSPM(2)*COS(WOT+PHCS<2)) 
CCSl { I >=ATN*REAl_ (CSC 11 I ) )+CSPM ( 3 ) •CO S( WOT+PHCS( 3) ) 

265 CONTINUE 
WRITE(6,264) XI 

264 FORMAT('1',10X,"CURRENTS & VOLTAGES AT FAULT LOCATION FOR 3 PHASE 
•FAULT AT',E13.6,'MILES',//,10X,'**••*****•*************•******•••* 
********************************$**********',//,8X,'TIME'»15X»'VAF' 
•.15X,'CAF',15X,•V9F'«ISX.'CBF',15X.•VCF',15X,'CCF') 
DO 269 1=1,N2 

269 WRITE(6* 263> TIMEI I>,VAFC I),CAFl I),VBF(I >,CBFlI) .VCF{I) ,CCF(I} 
268 FORMAT(4X,7(E13.6«5X)> 

WRITE(6,266) XI 
266 FORMAT(•1lOX,'SENDING END CURRENTS & VOLTAGES FOR 3 PHASE FAULT 

• AT',E13o6,'MILES',//,lOX,'•**•***•********•******•*•****•******** 
***********************************,//.8X,'TIME*,15X,'VAS',15X,'CAS 
• ',15X,•VBS'.15X, 'CBS',15X,'VCS', 15X,'CCF') 
DO 267 1=1,N2 

267 WRITE(6,268) TIME{1),VASi(I>,CASl( I »,V3Sll I>,C3Si( I),VCS1(Ii , 
•CCSl(I) 

C FINDING THE MAGNITUDE OF THE SENDING END VOLTAGE OF PHASE A AT 
C DIFFERENT FREQUENCY COMPONENTS BY USING SUBROUTINE FFTSC. 

CALL FFTSC( VASl ,N2,ST,CT, IWK ,WK, CWO 
WRITE(6,460) 

450 FO«MAT{'I',lOX,'THE MAGNITUDE OF THE FREQUENCY COMP. OF THE VOLTAG 
•E OF PH. A (VS41) AT THE S.E.',//,10X,'***••••***•••••••***•••**•• 
*******************************************************,//,20X,'FRE 
•QUENCY',20X,'MAGNITUDE') 

455 F0RMAT(20X,2(E1I.4,18X)) 
DO 450 1=1,129 
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F R E O U t I ) = P L O A T (  

AMAG(I)=SQRT(ST(Ii*ST(I)+CT(I)*CT(I))/FL0AT(N2) 
WRITE(6.45 5)FREQU(I)»AMAG{I) 

450 CONTINUE 

C CALLING GRAPH TO OBTAIN THE WAVEFORMS OF THE VOLTAGE & THE CURRENT 
C AT THE FAULT LOCATION AND AT THE SENDING END. 

CALL ORIGINtO.05.0.0,5) 
CALL GRAPHINI.TIME.VASl.I.10 I.7, ,6..0.•3.»0..0..«TIME IN SEC•; »,• 

•PU VOLTAGES:','THREE PH. F.AT Xi;',*SENO. END. VGE VASl;•) 
CALL GRAPHS(NI.TIME,VBS1,2,101,«SEND. END. VGE VBSl:') 
CALL GRAPHS!NI,TIME,VCSl,3.101,'SEND. END. VGE VCSl:') 
CALL GRAPH(NI,TIME,CA31,1,101,7,,6.,0.,0.,0.,0.,'TIME IN SEC.;',' 

•PU CURRENTS;THREE PH. F.AT Xi;','SENO. END.CUSR. CASl:') 
CALL GRAPHS(NI,TIME,CBS1,2,101,'SEND. END. CURR. CBSl;•} 
CALL GRAPHSCNI,TIME,CCSl,3,101,'SEND. END. CURR. CCSl;•) 
CALL GRAPH(NI,TIME,VAF,1,101,7.,6.,0.,0.,0.,0.,'TIME IN SEC.;',' 
• PU VOLTAGE'THREE PH. P. AT XI ;• ,'VGE OF PH. A AT F,;• ) 
CALL GRAPHSCNI,TIME,VBF,2,101,'VGE OF PH. 8 AT F. 
CALL GRAPHS(NI,TIME,VCF,3,l0l,*VGE OF PH. C AT F. 
CALL GRAPH(NI .TIME,CAF, 1 , 1 01 ,7.,6. ,0. ,0. ,0. ,0. , «-TIME IN SEC.:',' 

•PU CURRENT;THREE PH. F. AT Xi;','CUR. OF PH. A AT F.:') 
CALL GRAPHSCNI,TIME,CBF,2,101,'CUR. OF «H. B AT F.;') 
CALL GRAPHS!NÏ,TIME,CCF,3,101,'CUR. OF «H. C AT F.;') 
GO TO 4444 
WRITE(6,2222)IK,1ER 
FORMAT('0',2110) 
WRITE(6,2222)WK,1ER 
CONTINUE 
STOP 
END 

******************* 

• SUBROUTINE ABCD * 
******************* 

I 111 
2222 
3333 
4444 

C 
C 
c 
c 
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SUBROUTINE ABCOC X1.ZP«YP,AP.BP»CP»DP) 
COMPLEX AP(3.3).6P(3,3),CP(3,3).ZY3(3,3),ZP(3,3).YP(3,3), 

*SZYP(3,3),ZYPI{3.3).SZYPI(3,3)»ZPI(3.3),C03ZYP(3.3),DP(3.3), 
*SINSZY(3.3).COSSZY(3,3),ZCI<3,3),TEMP(3,3) 
DIMENSION WA( Id) .U(3*3) 

C MULTIPLY ZP*YP AND CALL IT ZYP 
DO 275 1=1,3 

DO 275 J=l,3 
275 ZYP(I.J)={0.0.0.0) 

DO 280 1=1,3 
DO 280 J=l.3 
DO 280 K=l,3 

280 ZYP(I,J)=ZYP{I.J)+ZP(I.K)»YP(K,J) 

C FIND THE SORT OF ZYP AND CALL IT SZYP 
DO 2 35 1=1,3 

DO 285 J=l,3 g 
285 SZYP( I, J )=CSQRT( ZYP( I , J) ) •> 

C FIND THE INVERSE OF SZYP AND CALL IT SZYPI 
DO 290 1=1,3 
00 295 J=l,3 
TEMP(I,J) = SZYP( I,J) 

295 SZYPKI. J) = (0.0,0«0) 
290 SZYPI(I,I)=(1.0,0.0) 

CALL LEQT1C(TEMP,3,3,SZYPI,3,3,0.WA,1ER) 
C FIND THE SINSH AND COSH WHICH ARE EQUAL TO (EXl-EX2)/2. AND (EXl+EX2)/2. 

DO 300 1=1,3 
DO 305 J=l,3 

305 U(I,J)=0.0 
300 U(I.I)=1.0 

DO 310 1=1,3 
DO 310 J=l,3 

310 S1NSZY(I,J)=SZYP(I,J)«X1 
DO 315 1=1,3 
DO 315 J=l,3 

315 COSSZY(I,J)=U{I,J)+.5*X1*X1*ZYP(I,J) 
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00 360 1=1,3 
DO 360 J=l.3 

360 AP{I,J)=C0S5ZY(I,J) 
C MULTIPLY SINSZY * 3ZYPI * ZP WHICH IS EQUAL TO BP 

00 301 1=1,3 
00 301 J=1,3 
ZCK I,J)=( 0.0,0.0) 
DO 301 K=l,3 

301 ZCK I,J)=ZCI( I, JJ+SINSZY( I,K)*SZYPI(K,J) 
DO 302 1=1,3 

DO 302 J=I,3 
BPtI,J)=(0.0,0.0) 
DO 302 K=l,3 

302 BP(I,JJ=BP(I,J)+ZCI[I,KJ*ZP(K,J) 
C FIND THE INVERSE OF MATRIX ZP AND CALL IT ZPI 

DO 314 1=1,3 
DO 320 J=l,3 
TEMP(I,J)=ZP(I,J) 

320 ZPK I, J) = ( 0.0,0.0) 
314 ZPK I, I)=( 1.0,0.0) 

CALL LEQT1C(TEMP,3,3,ZPI,3,3,0,WA,IER) 
C MULTIPLY ZPI * SZYP AND CALL IT ZYPI 

DO 330 1=1,3 
DO 2 30 J=1 , 3 
ZYPI ( I ,J ) = (0,0,0.0) 
DO 330 K=l,3 

330 ZYPI ( Î , J ) = ZYPK I,J)+ZPKI,K) •SZYPCK, J) 
C MULTIPLY SZYP * SINSZY TO GET CP 

DO 335 1=1,3 
DO 335 J=1,3 
CP<I,J>=(0.0,0.0) 
DO 335 K=I,J 

335 CP{I,J)=CP(I,J)+SZYP{I,K)*SINSZY(K,J) 

C MULTIPLY ZPI * CCSSZY AND CALL IT COSZYP 
DO 3 40 1=1,3 
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00 340 J=l,3 
COSZYPCI,J)={0.0,0.0) 
OO 340 K=l«3 

340 COSZYP(I,J)=COSZYP{ I ,J)+ZPI{ I»K)•COSSZY(<,J) 
C MULTIPLY COSZYP * ZP AND CALL IT OP 

DO 3 45 1=1,3 
00 345 J=l,3 
OP(I,J)=(0.0,0.0) 
DO 345 K=l,3 

345 DP(I,J)=OP(I,J)+COSZYP{I,K)*ZP(K,J) 
RETURN 
END 

C 
C ******************* 
C * SUBROUTINE VRIR * 
C ******************* M 

cy> C 

SUBROUTINE VRIR(VS22sCS22,APP.BPP.CPP,DPP»VV,CC*VM,CM«PHV,PHCI 
COMPLEX VS22C3),CS22(3),APP(3,3>,8PP(3*3),CPP(3,3),VV(3),CC(3)« 

•DPP(3,3) 
DIMENSION CMC 3),VM{3),PHV(3J ,PHC(3) 
OO 365 1=1,3 
VV(I)=(0.0,0.0) 
CC(I)=(0,0,0.0) 

365 CONTINUE 
DO 370 1=1,3 
DO 370 J=l,3 
VV(I>=VV(i)+APP(I,J)*VS22(J)+BPP(I,J)»CS22(J) 
CC(I)=CC(I)+0PP(I,J)*CS22(J)+CPP(I,J)*VS22(J) 

370 CONTINUE 
OO 371 1=1,3 
VM(I)=CABS(VV(I))*SQRT(2.0) 
PHVlI)=ATAN2(AIMAG(VV(I)),AEAL(VV(I))) ^ 
CM(I)=CAB5(CC(I))*SQRT(2.0) 1 
PHC(I)=ATAN2(AIMAG(CC{I)).REAL(CC(I))) 5 
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3 71 CONTINUE 
RETURN 
END 

C 
C 
C *****************t 

C * SUBROUTINE VFT * 
C ****************** 
C 

SUBROUTINE VFT(VFM,W,WO.DW,PHF,VFP) 
COMPLEX VFP(3).EJPH(3).EJPHC(3).VF(3),CMPLX,EP1< EP2 
OIMENSICN VFM(3).PHF(3} 
EP1=1,0/CMPLX<DW»(W-WO)) 
EP2=1,0/CMPLXCDW.(W+WO)) 
DO 3 1=1.3 
EJPH(I > = CMPLX{COS(=»HF( I ) ) ,SIN(PHF( I ? ) ) 
EJPHC( I )=CONJG(EJPH( I) ) 
VFP( I)=-.5*{VFM( I) »*(EPl*EJPH( IJ +EP2*EJPHC( I)) 

3 CONTINUE 
RETURN 
END 

C 
C ******************* 

C * SUBROUTINE LLLF * 
C ******************* 

C 
SUBROUTINE LLLF(TVRI . T2ITI,VF,VRF) 
COMPLEX TVRI (3.3) .T2ITU 3»3) .VF( 3) .VRF(3) 
00 245 1=1.3 

245 VRFC I)=( 0.0,0.0) 
00 250 1=1.3 
DO 250 J=1.3 

2 50 VRF( I)=VRF(I)+TVRI{I ,J)*VF(J) 
RETURN 
ENO 
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CFA=-VF(I>/(TI(1,I)+ZF(1,1)) 
VRF(1)=-TI(1,1)»CFA 
VRF(2)=-TI(2«1)*CFA 
VRFC3)=-TI(3,l)*CFA 

RETURN 
END 

******************** 

* SUBROUTINE AIFFT * 
******************** 

SUBROUTINE AIFFT(X,M) 
COMPLEX X(1024),U.W,T,CMPLX 
N=2**M 
NV2=N/2 
NMl=N-l 

J— \ 
BIT REVERSAL SECTION 
DO 30 I=I»NMl 
IF(I.GE.J) GO TO 10 
T=X( J) 
X(J)=X(I ) 
X(I)=T 
K=NV2 
IF(K.GE.J) GO TO 30 
J—J-K 
K = K/2 

GO TO 20 
J=J+K 

PI=3«14159265358979 
CALCULATION OF THE COMPLEX MULTIPLING 
FACTORS; AND THE BASIC BUTTERFLY SECTION. 
DO 50 L=1.M 
LE=2**L 
LEl=LE/2 



www.manaraa.com

c 
c 
c 
c 
c 

****************** 

* SUBROUTINE LL^ * 
****************** 

SUBROUTINE LLF(VF,TI,ZF,VRF) 
COMPLEX VF(3).TI(3,3),ZF{3.3),VRF(3),CF8 
CFB=(VF(2)-VF(3))/(TI(2,3)-TI(2,2)-TI(3,3)+TI(3,2)-ZF(l,I)) 
VRF(1)=CTI(I,3)-TI{1,2))*CFB 
VRF(2)={Il(2.3)-TI(2,2))*CFB 
VRF(3)=(TI(3.3)-TI(3,2))«CFB 

SUBROUTINE LLGFÏVF,TI,ZF•VRF} 
COMPLEX VF{3) ,TI(3,3). ZF(3,3).VRF(3).CF3.CFG.ZFT 
ZFT=-(ZF(1.1)+TI(3,3))/TI(2.3) 
CFB=-(ZFT»VF(2>+VF(3))/(ZFT*(ZF(1,1)+TI(2,2))+TI(3,2J) 
CFC=-((ZF( l. l )+TI(2 ,2) )*CFB + VF(2))/TI (2»3) 
VRF(1)=-TI{1,2)*CF8-T[(1,3)*FFC 
VRF{2)=-TI(2.2)*CFP-Tl(2,3)*CFC 
VRF(3)=-TI(3,2)»CFE-TI(3,3)*CFC 

RETURN 
END 

C 
C 
C 
c 
c 

******************* 

* SUBROUTINE LLGF * 
******************* 

M 
vo 
VO 

RETURN 
END 

C 
C 
c 
c 
c 

****************** 

* SUBROUTINE LGF * 
****************** 

SUBROUTINE LGF(VF,TI,ZF,VRF) 
COMPLEX VF(3),TI{3,3).ZF{3,3).CFA,VRF(3) 
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U={I.0.0.0) 
W = C M P L X ( C G S f P I / F L O A T ( L E I  )  )  , S I N ( P I / F L G A T ( L E  I  )  )  >  

3 0  5 0  J = l . L E l  

D O  4  0  I - J . N . L E  

I P = I + L £ 1  
T = X ( I P ) * U  
X ( I P ) = X ( I ) - T  

4 0  X ( I ) = X ( I ) f T  

5 0  U = U * *  

R F T U R N  

END 

ro 
o 
o 
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